Increased Oxidative Stress and NLRP3 Inflammasome Activation May Drive “Cytokine Storms” in Aging, Type 2 Diabetes, Cardiovascular Disease, Obesity and Hypertension in Persons with SARS-CoV-2 Infections

James P. Bennett, Jr.

Neurodegeneration Therapeutics, Inc.

Charlottesville, VA 22901


James P. Bennett, Jr. M.D. Ph.D.

Neurodegeneration Therapeutics, Inc.

3050A Berkmar Drive

Charlottesville, VA 22901-3450

PH: (434) 529-6457

FAX: (434) 529-6458


Infections with SARS-CoV-2 virus result in symptoms of a syndrome now referred to as COVID-19 that have increased morbidity and mortality (M&M) in aged persons, particularly those with underlying medical conditions such as obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease/atherosclerosis, and hypertension (HTN). Much of this increased M&M appears to arise from “cytokine storms”, overproduction of toxic cytokines that are part of the normal immune response. Because these underlying medical conditions are associated with increased oxidative stress (O.S.) and NLRP3 inflammasome activation, infection with SARS-CoV-2 virus may trigger a toxic feed-forward “cytokine storm”.

In this paper I review the recent data concerning how increased O.S. (overproduction of oxidative/nitrative species) and NLRP3 activation are associated with all of these conditions that can yield increased M&M in SARS-CoV-2 infections. Recently, adverse interactions of SARS-CoV-2 proteins with mitochondrial machinery have been described. Both may result in damage to mitochondrial DNA (mtDNA), a recognized activator of NLRP3 inflammasome.

Mitochondrial dysfunction leading to O.S. and NLRP3 inflammasome activation should now be considered as pathophysiological events producing cytokine storms with increased M&M in SARS-CoV-2 infection of older persons with chronic medical conditions. Anti-oxidant chemicals can be safely administered to humans and/or experimental animals, leading to reduction of O.S. Inhibitors of NLRP3 inflammasome are also known. Antioxidants and NLRP3 inflammasome inhibitors may thus comprise part of a combinatorial approach to SARS-CoV-2 infections and may prevent cytokine storms in susceptible persons. (233 words)


Exposure to the highly infectious SARS-CoV-2 virus has resulted in an international pandemic in only a few months. While some infected persons (generally young) have minimal or no symptoms, older individuals (1, 2), particularly those with chronic medical conditions such as cardiovascular disease/atherosclerosis, T2DM, hypertension (HTN) or obesity can develop multiple organ failure and death. To date, over 140,000 persons in the United States alone have died from SARS-CoV-2 infection since January, 2020.

O.S. is a biochemical state that results from production of oxidative species, particularly free radicals (molecules with unpaired electrons), in greater abundance than can be detoxified by endogenous anti-oxidative systems. Most free radicals are believed to originate from electrons that inappropriately leave the electron transport chain (ETC) of mitochondria and reduce nearby molecules. Superimposed infection with SARS-CoV-2 and resulting mitochondrial damage in the setting of baseline impaired mitochondrial function in older persons with chronic medical diseases may further activate NLRP3 inflammasomes and lead to deadly “cytokine storms” (1, 3-5).

The inflammasome is a multiprotein complex that is an important part of the innate immunity system (6). Inflammasomes recruit pro-caspase 1 via an adapter molecule known as ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)). Active caspase 1 cleaves pro-interleukin 1-beta (pro-IL-1) and pro-interleukin 18 (pro-IL-18) into mature IL-1and mature IL-18, respectively. Activated inflammasomes also initiate a form of cell death known as pyroptosis that is mediated by gasdermin D (GSDMD), which forms pores in the plasma membrane of cells.

Several inflammasomes have been described, including NLRP3, NLRP1, AIM2 and NLRC4 (6). NLRP3 is among the best characterized and most studied, and consists of the sensor molecule NLRP3 (contains a pyrin domain, PYD), the adaptor protein ASC (contains PYD and CARD domains) and pro-caspase 1 (contains CARD domain). Upon activation, the NLRP3 inflammasome consists of a NLRP3 protein-ASC-pro-caspase 1 complex.

Although it remains unclear why clinical outcomes are so varied, two potential unifying and interacting mechanisms are increased oxidative stress (O.S.) and NLRP3 inflammasome activation. O.S. has been shown to be present in aging (7-154), T2DM (7, 10, 19, 34-36, 48, 54, 56, 98, 112, 119, 121, 127, 130, 138, 155-279), hypertension (16, 21, 26, 34, 48, 52, 96, 98, 101, 107, 113, 114, 116-118, 120-122, 135, 160, 187, 189, 201, 206, 225, 254, 267, 271, 273, 275, 280-381), cardiovascular disease/atherosclerosis (9, 10, 29, 34, 35, 42, 44, 48-50, 62, 71, 97, 102, 103, 110, 114, 116-118, 120, 121, 156, 165, 169, 180, 183, 189, 195, 197, 199, 201, 205, 213, 220, 223-226, 232, 233, 241, 280-282, 284, 285, 289-291, 293-295, 297, 305, 307, 309, 311-313, 315, 318, 319, 321, 322, 324, 325, 327, 330, 333, 335, 339, 340, 342, 343, 348-350, 352, 355, 382-404) and obesity (19, 35, 36, 42, 44, 48, 49, 53, 56, 67, 69, 122, 137, 155, 156, 160, 164, 165, 169, 185, 186, 188, 189, 197, 200, 206, 216, 224, 225, 227, 228, 231, 232, 234, 242, 254, 266, 267, 272, 298, 324, 325, 340, 368, 370, 373, 383, 387, 388, 392, 393, 395, 397, 399-402, 405-470).

NLRP3 inflammasome activation has also been demonstrated in aging (“inflammaging”) (1, 22, 32, 62, 72, 78, 79, 84, 106, 117, 134, 137, 471-593), T2DM (156, 192, 214, 237, 246-248, 255, 267, 476, 492, 493, 496, 497, 508, 512, 526, 533, 538, 539, 594-718), hypertension (1, 5, 117, 267, 369, 373, 374, 485, 538, 561, 646, 698, 714, 719-823), cardiovascular disease/atherosclerosis (3, 62, 117, 137, 156, 391, 403, 492, 494, 496, 498, 501, 507, 512, 544, 545, 552, 553, 609, 611, 619, 634, 645, 647, 651, 661, 665, 683, 684, 687, 692, 695, 708, 719, 721, 727, 728, 730, 732, 736, 741, 744, 748, 752, 753, 759, 764, 765, 824-890) and obesity (3, 137, 156, 267, 373, 425, 431, 442, 444, 452, 460, 461, 483, 493, 496, 508, 510, 538, 539, 598, 599, 601, 603, 620, 623, 626, 627, 631-634, 636, 639-641, 643, 647, 651, 654, 661, 662, 664, 669, 672, 677, 678, 683, 688, 692, 696, 697, 699, 703, 707, 708, 733, 736, 739, 742, 747, 826, 829, 834, 842, 856, 857, 860, 869, 891-941).

Mitochondria are abundant organelles that are believed to have originated from endosymbiosis by early Archea of proto-bacteria containing metallo-proteins that could detoxify molecular oxygen. This “symbiosis” hypothesis of mitochondrial origin, while remaining controversial, has received extensive genetic and molecular biochemical support since first championed by Lynn Margulis (942-946).

Mitochondria are found in all terrestrial animals, almost all eukaryotic cells and metabolize chemical potential energy-containing substrates, ultimately derived from solar photons, to generate through the ETC a gradient of protons used to synthesize adenosine triphosphate (ATP), a universal energy currency. This process of electrons moving down the ETC linked to ATP production is known as oxidative phosphorylation (O.P.).

The mitochondrial ETC normally has very high efficiency, in the range of 98% or higher. But the efficiency is not 100%, with the net result that under basal conditions 6-8 liters of superoxide gas (O2*) are formed every 24 hrs in the course of O.P. and ATP production. At an efficiency of 98%, about 2.82 moles of “extra” ATP equivalent in electrons are injected into the ETC to meet the average 24 hr. needs of a 70 kg person (a 70 kg person needs ~70 kg ATP/24 hrs. = 138 moles ATP/24 hrs.). These 2.82 moles of “excess” ATP equivalent would require ~4.25X1024 electrons injected into and subsequently leaking from the ETC under normal coupling (~2.5 electrons/ATP molecule). If all leaked electrons form superoxide (O2*) and no electrons are scavenged, this would yield 7.05 moles of O2* gas, or about 179 liters of O2* gas assuming ideal behavior, 37 degrees C, 1 atmosphere pressure. That there are only 6-8 liters of O2* gas formed in 24 hrs. indicates that normally there is extensive scavenging of electrons leaking from the ETC in spite of an abundance of electrophilic molecular oxygen in the mitochondrial matrix.

O2* gas, formed in the mitochondrial matrix, is negatively charged and thus does not pass readily across the lipid-rich mitochondrial inner membrane (I.M.). What O2* gas is formed is rapidly dismutated to hydrogen peroxide by superoxide dismutase (SOD) enzymes. Genetic ablation of the mitochondrial isomer of SOD (SOD2, located mainly in mitochondrial matrix) is embryonic lethal, which indicates the essential role of SOD2 to remove mitochondrially generated O2* gas. Any O2* gas escaping to the cell cytoplasm or generated in compartments other than mitochondria is dismutated to hydrogen peroxide by SOD1, the cytosolic SOD, which may also be located in the mitochondrial inter-membrane space (I.M.S.) between the inner and outer mitochondrial membranes. In both cases, formed hydrogen peroxide is removed by catalase enzymes, which convert hydrogen peroxide to water and oxygen. In this manner, oxygen from O2* gas is “recycled” back to mitochondria. Other important ROS/RNS-scavenging enzymes include thioredoxins and peroxyredoxins.

Free electrons leaking from the ETC are scavenged ultimately by glutathione, which normally exists in the reduced form and serves as a cofactor for several enzymes that remove hydrogen peroxide (i.e. catalase) and other oxidants. During its use as a cofactor, glutathione is oxidized to a disulfide that then is reduced/recycled to sulfhydryl (reduced) glutathione by the actions of glutathione reductase. Both mitochondria and cell cytoplasm contain high levels of reduced glutathione and the enzymes needed for its renewal.

Nitric oxide (NO) is a free radical gas used extensively in multiple signaling systems, is a vasodilator in many vascular beds and is synthesized by mitochondria through controversial mechanisms. NO can non-enzymatically combine with O2* to form peroxynitrite anion (ONOO), which is “trapped” in mitochondrial matrix by its negative charge, can nitrosylate tyrosine residues on proteins and can decompose spontaneously to yield the very reactive hydroxyl free radical (OH*) that is one of the most powerful oxidants known. OH* can also be formed non-enzymatically by the “Fenton reaction” between hydrogen peroxide and unbound ferrous ion (Fe+2) and is believed to oxidize the first molecule it comes into contact with. “Reactive nitrogen species” (RNS) such as NO* and ONOO represent an additional component of damage to macromolecules both within and external to mitochondria and should be considered as contributory along with “reactive oxygen species” (ROS).

Under normal conditions little oxidative stress exists, as most escaping electrons are scavenged (see above) and ROS/RNS, which are mainly but not exclusively formed in mitochondria, are chemically detoxified. However, ROS/RNS are not removed completely and gradually can cause accumulated oxidative/nitrative damage to multiple cellular constituents, including DNA, RNA, proteins and certain lipids of cells. Mitochondrial DNA (mtDNA), a separate circular genome ~16kb in size, maternally inherited and found normally as multiple copies in each mitochondrial matrix, has limited protein protection (in contrast to histones and nuclear genomic DNA) and capacity to repair damage from ROS/RNS. Thus, mtDNA is a target of ROS/RNS, is damaged ~10-fold during aging compared to nuclear genomic DNA, and is a noted activator of the NLRP3 inflammasome (516, 532, 590, 612, 680, 704, 729, 732, 740, 822, 874, 907, 947-956).

SARS-CoV-2 Virus and Mitochondria

Anand and Tikoo, who published their review in 2013 (957), discuss how viruses other than CoV2 can alter mitochondrial function. Singh, et al (2), recently reported that viral RNA of SARS-CoV-2 virus, which is similar to viral RNA of SARS-CoV1 virus, may localize in mitochondria leading to “hijacking” of mitochondria, and that viral proteins may alter mitochondrial functions and mitochondrial involvement in innate immunity.

Mitochondria should be considered as potential targets of infection by several viruses, including SARS-CoV-2. In addition, mitochondrial damage leading to oxidative stress is a recognized activator of the NLRP3 inflammasome (62, 78, 79, 134, 137, 192, 214, 267, 391, 431, 486, 488, 492, 516, 529, 532, 534, 554, 555, 572, 589, 590, 593, 595-597, 612, 615, 620, 648, 661, 675, 680, 684, 689, 699, 704, 708, 709, 711, 715, 728, 729, 732, 740, 744, 751, 752, 757, 766, 767, 783, 785, 805, 807, 819, 822, 864, 865, 869, 874, 878, 907, 923, 925, 926, 929, 932, 937, 948-956, 958-1000), which has been described as over-activated in aging, hypertension, obesity, cardiovascular disease and T2DM (see above).

Assessing Oxidative Stress in Humans

Animal and human tissues and cells have been shown to accumulate oxidative damage to nucleic acids such as DNA and RNA, leading to the adducts 8-hydroxy-deoxy guanosine (8-OHdG, DNA) and 8-hydroxy guanosine (8-OHG, RNA), respectively, among many others. These oxidative nucleic acid derivatives can lead to DNA copying errors, or RNA translation errors. These oxidative nucleic acid derivatives are more common in mitochondrial DNA (mtDNA) and mitochondrial RNA (mtRNA), presumably reflecting both the physical proximity of mtDNA and mtRNA to ROS/RNS formed by the ETC, limited protein protection of mtDNA and reduced capacity in mitochondria to repair such damages. ROS/RNS damage to proteins is conveniently assayed by protein carbonyl or nitrotyrosine content, and ROS/RNS damage to lipids is conveniently assayed by hydroxynonenal (HNE) content.

Because the human brain disproportionately uses metabolic fuels and oxygen (2-3% of body weight, 20-25% of total metabolic fuel and oxygen consumption), it is particularly damaged by ROS during the lifespan. Brain oxidative stress may underlie reduced brain energy transformation during aging and onset of neurodegenerative diseases. Brain oxidative stress may underlie the encephalopathy associated with SARS-CoV-2 infection that is increasingly reported (1001-1011).

What Is(Are) the Origin(s) of O.S. Damage and NLRP3 Inflammasome Activation in Aging and Chronic Medical Conditions?

There is likely no single answer to this question. If mitochondrial symbiosis survived evolutionary pressure due to favorable protection from molecular oxygen (a toxic “by-product” of photosynthesis) and survival of the “oxygen holocaust” (this is a controversial argument), then O.S. can be viewed as an inevitable consequence of respiring in an oxygen environment. By this argument, the chronic medical conditions discussed simply accelerate a process (O.S.) that would normally appear and lead to bioenergetic decline and ultimate death of the organism’s cells.

However, that may be too simplistic, and one should consider mechanisms operative that could both lead to O.S. and how O.S. results in inflammasome activation. In terms of O.S., one needs to consider that electrons are quantum entities flowing through the electron transport chain (E.T.C.), with both wave and particle properties depending on what kind of measurement is made. In mitochondria, the location of electrons in the E.T.C. is relatively defined, as is the speed of transit through the E.T.C.. Both of these properties defy the Heisenberg uncertainty principle, until one realizes that mitochondria are more properly regarded as macroscopic entities, far larger than the “Planck” size where the uncertainty principle is applicable.

Also, the concept of decoherence (loss of pure quantum behavior) (1012) may apply as electrons flow in a more macroscopic mitochondrial entity. Mitochondria may even convert electrons into a form of superconductivity, changing the electrons from fermions (particles with unique quantum states) into bosons that have identical quantum states. Normally superconductivity is found only at extremely low temperatures, so this idea must be regarded as very speculative.

Independently of how one views the physics of electron flow within mitochondria, the “bottom line” is that this electron flow is coupled (through as yet unclear mechanisms) to pumping of protons across the mitochondrial inner membrane (I.M.) into the inter-membrane space (I.M.S.). Mitochondria thus create a proton electrochemical gradient across the I.M.S./I.M. that is a form of potential energy and is used to convert ADP (adenosine diphosphate) into ATP (adenosine triphosphate) through the nanomotor enzyme ATP synthase (aka Complex V) by forcing a high-energy phosphorus-oxygen bond to be created.

Mitochondria can “leak” electrons at many locations. Under normal circumstances, electron flows through the Fe-sulfur complexes of Complex 1 at the beginning of the E.T.C. terminate in the reduction of ubiquinone (coenzyme Q10) to ubiquinol. At this juncture, electron flow to ubiquinone must compete thermodynamically with flow to molecular oxygen, which is energetically much more favorable. The reduction of ubiquinone is likely favored by having a very abundant concentration of ubiquinone relative to that of molecular oxygen at that location in Complex I. However, some electron leakage likely occurs at this point.

Further electron transfer from ubiquinol to the heme in oxidized cytochrome c protein in Complex III likely occurs within the restricted confines of the macromolecular assembly of Complexes I, III and IV recently described in mitochondria from several species’ tissues. Access to molecular oxygen again is likely physically restricted, even though reduction of molecular oxygen to water is more thermodynamically favored. Likely some electron leakage takes place here as well. The reduction of molecular oxygen to water finally occurs at Complex IV (aka cytochrome c oxidase), following re-oxidation of cytochrome c, with regulated electron flow from cytochrome c through the iron and copper complexes within complex IV to oxygen.

Proton pumping (protons are also quantum entities) occurs at Complexes I, III and IV. If the coupling between electron flow in the E.T.C. and proton pumping is reduced, and/or if the relative leak of protons across the I.M. increases, then more electrons/unit time will need to flow through the E.T.C. to maintain the proton gradient and support adequate ATP synthesis. This will likely increase the absolute amount of electron leakage from the E.T.C. and potentially increase O.S.

Electron flow rates through the E.T.C. may also be reduced. Electrons appear to utilize “quantum tunneling” to reduce activation energy barriers to flow through E.T.C. proteins (1013). If this mechanism of quantum tunneling becomes impaired, then rates of ATP synthesis may be reduced with the need for increased electron flow through the E.T.C., leading to more electron leakage and increased O.S.

Quantum tunneling sites on E.T.C. proteins may be damaged in two non-exclusive ways. First, previously normal proteins, particularly in assembled Complex I where tunneling has been most extensively studied, may be damaged by ROS/RNS generated over time. Second, most E.T.C. proteins, particularly those believed to be involved in electron transport, are coded by the nuclear genome and imported into mitochondria. They may be damaged at the level of cytosolic mRNA and defectively translated, damaged as cytosolic proteins after translation and prior to importation into mitochondria, or damaged after mitochondrial importation and assembly into E.T.C. Complexes.

How increased O.S. arises in the chronic medical conditions of aging, T2DM, HTN, cardiovascular disease and obesity remains to be determined. Whether increased O.S. in these conditions is causal or simply correlative is also not clear at this time. Likely, O.S. arises due to various combinations of mechanisms discussed above, in addition to mechanisms not discussed or not yet known.

How might O.S. lead to inflammasome activation? The likely culprit (and there are potentially many culprits) is mtDNA damaged by ROS/RNS and released by damaged mitochondria, either spontaneously or by means of mitochondrial autophagy (mitophagy). Such damaged mtDNA’s can not only drive mitophagy but can, through unknown mechanisms, activate inflammasomes, particularly the NLRP3 inflammasome most intensively studied (516, 532, 590, 612, 680, 704, 729, 732, 740, 822, 874, 907, 947-956). Inflammasome inhibitors are also known, some of which have been administered to humans (6).

Use of Antioxidants in Humans to Reduce Oxidative Stress

While there are dozens of known antioxidant molecules, both man-made and naturally occurring, relatively few combine mitochondrial matrix localization and successful administration to homo sapiens or animal models of human diseases. Those meeting both criteria include active molecules attached to triphenylphosphonium backbones, such as MitoQ10 (1014) and pramipexole isomers (1015, 1016). N-acetylcysteine, while not concentrated into mitochondria, can function as a glutathione repleting agent and exerts antioxidative effects. It has also been administered to humans (1017).


Oxidative Stress (O.S) arises mainly from mitochondria when production rates of reactive oxygen species (R.O.S.) and reactive nitrogen species (R.N.S.) exceed scavenging rates. O.S. damages mitochondrial components, specifically mtDNA, which can activate inflammasomes and lead to cytokine storms. Infection with SARS-CoV-2 virus, producing symptoms known as COVID-19, is itself toxic to mitochondria and can trigger cytokine storms in older subjects who have additional medical conditions such as T2DM, HTN, obesity and cardiovascular disease. A unifying mechanism is the increased O.S. and inflammasome activation in older persons with any of these additional chronic medical diseases, combined with SARS-CoV-2 infection.

If correct, this mechanism dictates therapy of SARS-CoV-2 infection in persons with any of the co-morbid conditions known to increase morbidity and mortality. A combinatorial therapeutic approach would consist of the early co-administration of mitochondrially targeted antioxidant and inflammasome inhibitor.

References Cited

(For the conditions of aging, T2DM, HTN, cardiovascular disease and obesity, only references from 2010-2020 are shown. Apologies are extended to the many investigators who published studies about these conditions prior to 2010, but the numbers of such studies precluded my using them in this Reference list)

1. Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Geroscience (2020). Epub 2020/05/21. doi: 10.1007/s11357-020-00198-w. PubMed PMID: 32430627; PubMed Central PMCID: PMCPMC7237344.

2. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 Hijacking of Host Mitochondria in Pathogenesis of COVID-19. Am J Physiol Cell Physiol (2020). Epub 2020/06/09. doi: 10.1152/ajpcell.00224.2020. PubMed PMID: 32510973.

3. Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab (2020) 319(1):E105-E9. Epub 2020/05/28. doi: 10.1152/ajpendo.00198.2020. PubMed PMID: 32459524; PubMed Central PMCID: PMCPMC7322508.

4. Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia (2020) 34(7):1726-9. Epub 2020/06/03. doi: 10.1038/s41375-020-0887-9. PubMed PMID: 32483300; PubMed Central PMCID: PMCPMC7262681.

5. Rodrigues-Diez RR, Tejera-Munoz A, Marquez-Exposito L, Rayego-Mateos S, Sanchez LS, Marchant V, et al. Statins: Could an old friend help the fight against COVID-19? Br J Pharmacol (2020). Epub 2020/06/21. doi: 10.1111/bph.15166. PubMed PMID: 32562276; PubMed Central PMCID: PMCPMC7323198.

6. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis (2019) 10(2):128. Epub 2019/02/14. doi: 10.1038/s41419-019-1413-8. PubMed PMID: 30755589; PubMed Central PMCID: PMCPMC6372664.

7. Aboualizadeh E, Ranji M, Sorenson CM, Sepehr R, Sheibani N, Hirschmugl CJ. Retinal oxidative stress at the onset of diabetes determined by synchrotron FTIR widefield imaging: towards diabetes pathogenesis. Analyst (2017) 142(7):1061-72. Epub 2017/02/18. doi: 10.1039/c6an02603f. PubMed PMID: 28210739; PubMed Central PMCID: PMCPMC5388248.

8. Acharya P, Talahalli RR. Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA + DHA. Inflammation (2019) 42(3):946-52. Epub 2018/12/12. doi: 10.1007/s10753-018-0949-6. PubMed PMID: 30535619.

9. Aguilar-Alonso P, Vera-Lopez O, Brambila-Colombres E, Segura-Badilla O, Avalos-Lopez R, Lazcano-Hernandez M, et al. Evaluation of Oxidative Stress in Cardiomyocytes during the Aging Process in Rats Treated with Resveratrol. Oxid Med Cell Longev (2018) 2018:1390483. Epub 2018/06/02. doi: 10.1155/2018/1390483. PubMed PMID: 29854072; PubMed Central PMCID: PMCPMC5954862.

10. Ahn HY, Kim M, Seo CR, Yoo HJ, Lee SH, Lee JH. The effects of Jerusalem artichoke and fermented soybean powder mixture supplementation on blood glucose and oxidative stress in subjects with prediabetes or newly diagnosed type 2 diabetes. Nutr Diabetes (2018) 8(1):42. Epub 2018/07/22. doi: 10.1038/s41387-018-0052-y. PubMed PMID: 30026514; PubMed Central PMCID: PMCPMC6053428.

11. Aitbaev KA, Murkamilov IT, Fomin VV. [Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications.]. Adv Gerontol (2019) 32(1-2):20-8. Epub 2019/06/23. PubMed PMID: 31228364.

12. Alabarse PV, Hackenhaar FS, Medeiros TM, Mendes MF, Viacava PR, Schuller AK, et al. Oxidative stress in the brain of reproductive male rats during aging. Exp Gerontol (2011) 46(4):241-8. Epub 2010/10/26. doi: 10.1016/j.exger.2010.10.009. PubMed PMID: 20971183.

13. Alabarse PV, Salomon TB, Medeiros TM, Hackenhaar FS, Schuller AK, Ehrenbrink G, et al. Oxidative stress in the kidney of reproductive male rats during aging. Exp Gerontol (2011) 46(10):773-80. Epub 2011/05/31. doi: 10.1016/j.exger.2011.05.006. PubMed PMID: 21619925.

14. Almeida PMD, Kamath SU, Shenoy PR, Bernhardt LK, Kishore A, Rai KS. Persistent attenuation of brain oxidative stress through aging in perinatal maternal separated rat pups supplemented with choline and docosahexaenoic acid or Clitoria ternatea aqueous root extract. Folia Neuropathol (2018) 56(3):206-14. Epub 2018/12/05. doi: 10.5114/fn.2018.78702. PubMed PMID: 30509042.

15. Alway SE. Inflammation and Oxidative Stress Limit Adaptation to Stretch-Shortening Contractions in Aging. Exerc Sport Sci Rev (2017) 45(4):194. Epub 2017/07/14. doi: 10.1249/JES.0000000000000126. PubMed PMID: 28704215.

16. Amoureux S, Lorgis L, Sicard P, Girard C, Rochette L, Vergely C. Vascular BDNF expression and oxidative stress during aging and the development of chronic hypertension. Fundam Clin Pharmacol (2012) 26(2):227-34. Epub 2011/01/08. doi: 10.1111/j.1472-8206.2010.00912.x. PubMed PMID: 21210848.

17. Anand KV, Mohamed Jaabir MS, Thomas PA, Geraldine P. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int (2012) 12(4):741-50. Epub 2012/04/04. doi: 10.1111/j.1447-0594.2012.00843.x. PubMed PMID: 22469068.

18. Andrade LN, Nathanson JL, Yeo GW, Menck CF, Muotri AR. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet (2012) 21(17):3825-34. Epub 2012/06/05. doi: 10.1093/hmg/dds211. PubMed PMID: 22661500; PubMed Central PMCID: PMCPMC3412382.

19. Anusruti A, Xuan Y, Gao X, Jansen E, Laetsch DC, Brenner H, et al. Factors associated with high oxidative stress in patients with type 2 diabetes: a meta-analysis of two cohort studies. BMJ Open Diabetes Res Care (2020) 8(1). Epub 2020/02/23. doi: 10.1136/bmjdrc-2019-000933. PubMed PMID: 32079612; PubMed Central PMCID: PMCPMC7039603.

20. Aoi W, Sakuma K. Oxidative stress and skeletal muscle dysfunction with aging. Curr Aging Sci (2011) 4(2):101-9. Epub 2011/01/18. doi: 10.2174/1874609811104020101. PubMed PMID: 21235498.

21. Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal (2014) 20(1):74-101. Epub 2013/03/12. doi: 10.1089/ars.2013.5259. PubMed PMID: 23472618; PubMed Central PMCID: PMCPMC3880923.

22. Aredo B, Li T, Chen X, Zhang K, Wang CX, Gou D, et al. A chimeric Cfh transgene leads to increased retinal oxidative stress, inflammation, and accumulation of activated subretinal microglia in mice. Invest Ophthalmol Vis Sci (2015) 56(6):3427-40. Epub 2015/06/02. doi: 10.1167/iovs.14-16089. PubMed PMID: 26030099; PubMed Central PMCID: PMCPMC4464010.

23. Arguelles S, Cano M, Machado A, Ayala A. Effect of aging and oxidative stress on elongation factor-2 in hypothalamus and hypophysis. Mech Ageing Dev (2011) 132(1-2):55-64. Epub 2010/12/22. doi: 10.1016/j.mad.2010.12.002. PubMed PMID: 21172375.

24. Arruda LF, Arruda SF, Campos NA, de Valencia FF, Siqueira EM. Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS One (2013) 8(4):e61058. Epub 2013/04/18. doi: 10.1371/journal.pone.0061058. PubMed PMID: 23593390; PubMed Central PMCID: PMCPMC3625229.

25. Asha Devi S, Manjula KR, Subramanyam MV. Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat’s frontoparietal cortex. Neurosci Lett (2012) 529(2):155-60. Epub 2012/10/03. doi: 10.1016/j.neulet.2012.09.041. PubMed PMID: 23026027.

26. Ates I, Ozkayar N, Topcuoglu C, Dede F. Relationship between oxidative stress parameters and asymptomatic organ damage in hypertensive patients without diabetes mellitus. Scand Cardiovasc J (2015) 49(5):249-56. Epub 2015/06/09. doi: 10.3109/14017431.2015.1060355. PubMed PMID: 26053412.

27. Aydin AF, Coban J, Dogan-Ekici I, Betul-Kalaz E, Dogru-Abbasoglu S, Uysal M. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model. Metab Brain Dis (2016) 31(2):337-45. Epub 2015/11/01. doi: 10.1007/s11011-015-9755-0. PubMed PMID: 26518192.

28. Babizhayev MA, Vishnyakova KS, Yegorov YE. Telomere-dependent senescent phenotype of lens epithelial cells as a biological marker of aging and cataractogenesis: the role of oxidative stress intensity and specific mechanism of phospholipid hydroperoxide toxicity in lens and aqueous. Fundam Clin Pharmacol (2011) 25(2):139-62. Epub 2010/04/24. doi: 10.1111/j.1472-8206.2010.00829.x. PubMed PMID: 20412312.

29. Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, et al. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med (2013) 45(1):17-36. Epub 2012/03/03. doi: 10.3109/07853890.2011.645498. PubMed PMID: 22380696; PubMed Central PMCID: PMCPMC3717565.

30. Baeeri M, Mohammadi-Nejad S, Rahimifard M, Navaei-Nigjeh M, Moeini-Nodeh S, Khorasani R, et al. Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Mol Cell Biochem (2018) 441(1-2):21-33. Epub 2017/09/10. doi: 10.1007/s11010-017-3172-0. PubMed PMID: 28887692.

31. Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J Nanobiotechnology (2017) 15(1):92. Epub 2017/12/22. doi: 10.1186/s12951-017-0324-z. PubMed PMID: 29262862; PubMed Central PMCID: PMCPMC5738782.

32. Bai Z, Liu W, He D, Wang Y, Yi W, Luo C, et al. Protective effects of autophagy and NFE2L2 on reactive oxygen species-induced pyroptosis of human nucleus pulposus cells. Aging (Albany NY) (2020) 12(8):7534-48. Epub 2020/04/23. doi: 10.18632/aging.103109. PubMed PMID: 32320383; PubMed Central PMCID: PMCPMC7202523.

33. Bailey KL, Kharbanda KK, Katafiasz DM, Sisson JH, Wyatt TA. Oxidative stress associated with aging activates protein kinase Cepsilon, leading to cilia slowing. Am J Physiol Lung Cell Mol Physiol (2018) 315(5):L882-L90. Epub 2018/09/14. doi: 10.1152/ajplung.00033.2018. PubMed PMID: 30211654; PubMed Central PMCID: PMCPMC6295504.

34. Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, et al. Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J Gerontol A Biol Sci Med Sci (2012) 67(4):313-29. Epub 2011/10/25. doi: 10.1093/gerona/glr164. PubMed PMID: 22021391; PubMed Central PMCID: PMCPMC3309870.

35. Bailey-Downs LC, Tucsek Z, Toth P, Sosnowska D, Gautam T, Sonntag WE, et al. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci (2013) 68(7):780-92. Epub 2012/12/06. doi: 10.1093/gerona/gls238. PubMed PMID: 23213032; PubMed Central PMCID: PMCPMC3674713.

36. Baja ES, Schwartz JD, Wellenius GA, Coull BA, Zanobetti A, Vokonas PS, et al. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect (2010) 118(6):840-6. Epub 2010/03/03. doi: 10.1289/ehp.0901396. PubMed PMID: 20194081; PubMed Central PMCID: PMCPMC2898862.

37. Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, et al. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle (2011) 10(23):4065-73. Epub 2011/12/02. doi: 10.4161/cc.10.23.18254. PubMed PMID: 22129993; PubMed Central PMCID: PMCPMC3272288.

38. Banks WA, Morley JE, Farr SA, Price TO, Ercal N, Vidaurre I, et al. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc Natl Acad Sci U S A (2010) 107(51):22272-7. Epub 2010/12/08. doi: 10.1073/pnas.1016369107. PubMed PMID: 21135231; PubMed Central PMCID: PMCPMC3009756.

39. Baraibar MA, Friguet B. Oxidative proteome modifications target specific cellular pathways during oxidative stress, cellular senescence and aging. Exp Gerontol (2013) 48(7):620-5. Epub 2012/11/07. doi: 10.1016/j.exger.2012.10.007. PubMed PMID: 23127722.

40. Baraibar MA, Ladouce R, Friguet B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics (2013) 92:63-70. Epub 2013/05/22. doi: 10.1016/j.jprot.2013.05.008. PubMed PMID: 23689083.

41. Barbosa AD, Graca J, Mendes V, Chaves SR, Amorim MA, Mendes MV, et al. Activation of the Hog1p kinase in Isc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging. Mech Ageing Dev (2012) 133(5):317-30. Epub 2012/03/27. doi: 10.1016/j.mad.2012.03.007. PubMed PMID: 22445853.

42. Bartlett DE, Miller RB, Thiesfeldt S, Lakhani HV, Shapiro JI, Sodhi K. The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci (2018) 19(7). Epub 2018/07/26. doi: 10.3390/ijms19072139. PubMed PMID: 30041449; PubMed Central PMCID: PMCPMC6073138.

43. Basha PM, Poojary A. Oxidative macromolecular alterations in the rat central nervous system in response to experimentally co-induced chlorpyrifos and cold stress: a comparative assessment in aging rats. Neurochem Res (2012) 37(2):335-48. Epub 2011/10/14. doi: 10.1007/s11064-011-0617-9. PubMed PMID: 21993543.

44. Bellanti F, Romano AD, Lo Buglio A, Castriotta V, Guglielmi G, Greco A, et al. Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity. Maturitas (2018) 109:6-12. Epub 2018/02/18. doi: 10.1016/j.maturitas.2017.12.002. PubMed PMID: 29452783.

45. Benameur L, Charif N, Li Y, Stoltz JF, de Isla N. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells. Biomed Mater Eng (2015) 25(1 Suppl):41-6. Epub 2014/12/30. doi: 10.3233/BME-141247. PubMed PMID: 25538054.

46. Biradar SP, Tamboli AS, Khandare RV, Pawar PK. Chebulinic acid and Boeravinone B act as anti-aging and anti-apoptosis phyto-molecules during oxidative stress. Mitochondrion (2019) 46:236-46. Epub 2018/07/22. doi: 10.1016/j.mito.2018.07.003. PubMed PMID: 30026131.

47. Boesten DM, de Vos-Houben JM, Timmermans L, den Hartog GJ, Bast A, Hageman GJ. Accelerated aging during chronic oxidative stress: a role for PARP-1. Oxid Med Cell Longev (2013) 2013:680414. Epub 2013/12/10. doi: 10.1155/2013/680414. PubMed PMID: 24319532; PubMed Central PMCID: PMCPMC3844163.

48. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis (2015) 6(2):109-20. Epub 2015/03/31. doi: 10.14336/AD.2014.0305. PubMed PMID: 25821639; PubMed Central PMCID: PMCPMC4365955.

49. Bostick B, Aroor AR, Habibi J, Durante W, Ma L, DeMarco VG, et al. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels. Metabolism (2017) 66:14-22. Epub 2016/12/08. doi: 10.1016/j.metabol.2016.09.005. PubMed PMID: 27923445; PubMed Central PMCID: PMCPMC6581195.

50. Bottino DA, Lopes FG, de Oliveira FJ, Mecenas Ade S, Clapauch R, Bouskela E. Relationship between biomarkers of inflammation, oxidative stress and endothelial/microcirculatory function in successful aging versus healthy youth: a transversal study. BMC Geriatr (2015) 15:41. Epub 2015/04/19. doi: 10.1186/s12877-015-0044-x. PubMed PMID: 25888078; PubMed Central PMCID: PMCPMC4393601.

51. Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C. Changes in oxidative stress markers and biological markers of muscle injury with aging at rest and in response to an exhaustive exercise. PLoS One (2014) 9(3):e90420. Epub 2014/03/13. doi: 10.1371/journal.pone.0090420. PubMed PMID: 24618679; PubMed Central PMCID: PMCPMC3949717.

52. Brand S, Amann K, Schupp N. Angiotensin II-induced hypertension dose-dependently leads to oxidative stress and DNA damage in mouse kidneys and hearts. J Hypertens (2013) 31(2):333-44. Epub 2012/12/20. doi: 10.1097/HJH.0b013e32835ba77e. PubMed PMID: 23249827.

53. Brunelli V, Perillo P, Milione S. Comment on “The influence of palatable high-energy diet in diet-induced obesity pregnant rats on offspring oxidative stress in liver”. Eur Rev Med Pharmacol Sci (2018) 22(11):3275-6. Epub 2018/06/20. doi: 10.26355/eurrev_201806_15145. PubMed PMID: 29917218.

54. Bukhari SA, Naqvi SA, Nagra SA, Anjum F, Javed S, Farooq M. Assessing of oxidative stress related parameters in diabetes mellitus type 2: cause excessive damaging to DNA and enhanced homocysteine in diabetic patients. Pak J Pharm Sci (2015) 28(2):483-91. Epub 2015/03/03. PubMed PMID: 25730782.

55. Bullone M, Lavoie JP. The Contribution of Oxidative Stress and Inflamm-Aging in Human and Equine Asthma. Int J Mol Sci (2017) 18(12). Epub 2017/12/06. doi: 10.3390/ijms18122612. PubMed PMID: 29206130; PubMed Central PMCID: PMCPMC5751215.

56. Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta (2014) 1842(9):1693-706. Epub 2014/06/21. doi: 10.1016/j.bbadis.2014.06.010. PubMed PMID: 24949886; PubMed Central PMCID: PMCPMC4125611.

57. Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, Simon F. Oxidative Stress in Disease and Aging: Mechanisms and Therapies. Oxid Med Cell Longev (2016) 2016:8786564. Epub 2016/01/20. doi: 10.1155/2016/8786564. PubMed PMID: 26783417; PubMed Central PMCID: PMCPMC4689977.

58. Cabello-Verrugio C, Simon F, Trollet C, Santibanez JF. Oxidative Stress in Disease and Aging: Mechanisms and Therapies 2016. Oxid Med Cell Longev (2017) 2017:4310469. Epub 2017/03/02. doi: 10.1155/2017/4310469. PubMed PMID: 28246551; PubMed Central PMCID: PMCPMC5299193.

59. Cabello-Verrugio C, Vilos C, Rodrigues-Diez R, Estrada L. Oxidative Stress in Disease and Aging: Mechanisms and Therapies 2018. Oxid Med Cell Longev (2018) 2018:2835189. Epub 2018/10/23. doi: 10.1155/2018/2835189. PubMed PMID: 30344885; PubMed Central PMCID: PMCPMC6174789.

60. Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab (2015) 33(4):359-70. Epub 2015/03/26. doi: 10.1007/s00774-015-0656-4. PubMed PMID: 25804315.

61. Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L. Oxidative stress, inflamm-aging and immunosenescence. J Proteomics (2011) 74(11):2313-23. Epub 2011/07/02. doi: 10.1016/j.jprot.2011.06.005. PubMed PMID: 21718814.

62. Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants (Basel) (2018) 7(8). Epub 2018/07/26. doi: 10.3390/antiox7080098. PubMed PMID: 30042332; PubMed Central PMCID: PMCPMC6115926.

63. Carmeli E, Imam B, Bachar A, Merrick J. Inflammation and oxidative stress as biomarkers of premature aging in persons with intellectual disability. Res Dev Disabil (2012) 33(2):369-75. Epub 2011/11/29. doi: 10.1016/j.ridd.2011.10.002. PubMed PMID: 22119683.

64. Carney Almroth B, Johnsson JI, Devlin R, Sturve J. Oxidative stress in growth hormone transgenic coho salmon with compressed lifespan–a model for addressing aging. Free Radic Res (2012) 46(10):1183-9. Epub 2012/06/05. doi: 10.3109/10715762.2012.698009. PubMed PMID: 22655913.

65. Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, et al. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci (2019) 12:132. Epub 2019/06/14. doi: 10.3389/fnmol.2019.00132. PubMed PMID: 31191244; PubMed Central PMCID: PMCPMC6546816.

66. Castro Mdel R, Suarez E, Kraiselburd E, Isidro A, Paz J, Ferder L, et al. Aging increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exp Gerontol (2012) 47(1):29-37. Epub 2011/10/27. doi: 10.1016/j.exger.2011.10.002. PubMed PMID: 22027539; PubMed Central PMCID: PMCPMC3770191.

67. Cederholm T, Hellenius ML. [The importance of food for aging and longevity. Food composition, oxidative stress and weight are important factors]. Lakartidningen (2016) 113. Epub 2016/06/09. PubMed PMID: 27272545.

68. Cerrada-Gimenez M, Pietila M, Loimas S, Pirinen E, Hyvonen MT, Keinanen TA, et al. Continuous oxidative stress due to activation of polyamine catabolism accelerates aging and protects against hepatotoxic insults. Transgenic Res (2011) 20(2):387-96. Epub 2010/06/26. doi: 10.1007/s11248-010-9422-5. PubMed PMID: 20577801.

69. Cervellati C, Bonaccorsi G, Cremonini E, Romani A, Castaldini C, Ferrazzini S, et al. Waist circumference and dual-energy X-ray absorptiometry measures of overall and central obesity are similarly associated with systemic oxidative stress in women. Scand J Clin Lab Invest (2014) 74(2):102-7. Epub 2013/12/07. doi: 10.3109/00365513.2013.860618. PubMed PMID: 24304466.

70. Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB. Mitochondrial Dysfunction during Brain Aging: Role of Oxidative Stress and Modulation by Antioxidant Supplementation. Aging Dis (2011) 2(3):242-56. Epub 2012/03/08. PubMed PMID: 22396876; PubMed Central PMCID: PMCPMC3295058.

71. Chang CC, Chang YC, Hu WL, Hung YC. Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases. Oxid Med Cell Longev (2016) 2016:4797102. Epub 2016/11/04. doi: 10.1155/2016/4797102. PubMed PMID: 27807472; PubMed Central PMCID: PMCPMC5078662.

72. Chei S, Oh HJ, Jang H, Lee K, Jin H, Choi Y, et al. Korean Red Ginseng Suppresses the Expression of Oxidative Stress Response and NLRP3 Inflammasome Genes in Aged C57BL/6 Mouse Ovaries. Foods (2020) 9(4). Epub 2020/04/26. doi: 10.3390/foods9040526. PubMed PMID: 32331214; PubMed Central PMCID: PMCPMC7231237.

73. Chen B, Lu YR, Chen YN, Kang YJ, Cheng JQ. [Endothelium Aging and Oxidative Stress]. Sheng Li Ke Xue Jin Zhan (2015) 46(1):23-7. Epub 2015/06/25. PubMed PMID: 26103722.

74. Chen C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxid Med Cell Longev (2016) 2016:3571614. Epub 2016/04/14. doi: 10.1155/2016/3571614. PubMed PMID: 27069529; PubMed Central PMCID: PMCPMC4812465.

75. Chen C, Zhang J, Guo Z, Shi X, Zhang Y, Zhang L, et al. Effect of oxidative stress on AIF-mediated apoptosis and bovine muscle tenderness during postmortem aging. J Food Sci (2020) 85(1):77-85. Epub 2019/12/10. doi: 10.1111/1750-3841.14969. PubMed PMID: 31816098.

76. Chen CN, Thompson LV. Interplay between aging and unloading on oxidative stress in fast-twitch muscles. J Gerontol A Biol Sci Med Sci (2013) 68(7):793-802. Epub 2012/12/06. doi: 10.1093/gerona/gls240. PubMed PMID: 23213028; PubMed Central PMCID: PMCPMC3674714.

77. Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative Stress in Stem Cell Aging. Cell Transplant (2017) 26(9):1483-95. Epub 2017/11/09. doi: 10.1177/0963689717735407. PubMed PMID: 29113471; PubMed Central PMCID: PMCPMC5680960.

78. Chen L, He PL, Yang J, Yang YF, Wang K, Amend B, et al. NLRP3/IL1beta inflammasome associated with the aging bladder triggers bladder dysfunction in female rats. Mol Med Rep (2019) 19(4):2960-8. Epub 2019/02/06. doi: 10.3892/mmr.2019.9919. PubMed PMID: 30720125; PubMed Central PMCID: PMCPMC6423574.

79. Chen L, Na R, Boldt E, Ran Q. NLRP3 inflammasome activation by mitochondrial reactive oxygen species plays a key role in long-term cognitive impairment induced by paraquat exposure. Neurobiol Aging (2015) 36(9):2533-43. Epub 2015/06/30. doi: 10.1016/j.neurobiolaging.2015.05.018. PubMed PMID: 26119225.

80. Cheng Y, Wang X, Wang B, Zhou H, Dang S, Shi Y, et al. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice. Aging (Albany NY) (2017) 9(5):1359-74. Epub 2017/05/02. doi: 10.18632/aging.101232. PubMed PMID: 28458256; PubMed Central PMCID: PMCPMC5472737.

81. Chhunchha B, Kubo E, Singh P, Singh DP. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress. Aging (Albany NY) (2018) 10(9):2284-315. Epub 2018/09/15. doi: 10.18632/aging.101547. PubMed PMID: 30215601; PubMed Central PMCID: PMCPMC6188488.

82. Chiu DT, Wei YH. Special issue on “Oxidative stress and mitochondrial alterations in aging and disease”. Free Radic Res (2014) 48(9):967-9. Epub 2014/08/13. doi: 10.3109/10715762.2014.948536. PubMed PMID: 25113533.

83. Choi S, Kim JA, Li HY, Shin KO, Oh GT, Lee YM, et al. KCa 3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress. Aging Cell (2016) 15(5):801-10. Epub 2016/07/02. doi: 10.1111/acel.12502. PubMed PMID: 27363720; PubMed Central PMCID: PMCPMC5013018.

84. Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, et al. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight (2016) 1(11). Epub 2016/08/16. doi: 10.1172/jci.insight.87336. PubMed PMID: 27525312; PubMed Central PMCID: PMCPMC4979564.

85. Coats AJS. Cardiac Cachexia – A Window to the Wasting DisordersCardiac cachexia: perspectives for prevention and treatmentSkeletal muscle aging: influence of oxidative stress and physical exerciseCancer-induced muscle wasting: latest findings in prevention and treatmentCancer-induced cardiac cachexia: pathogenesis and impact of physical activity (Review)Muscle wasting and cachexia in heart failure: mechanisms and therapiesEffects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Arq Bras Cardiol (2018) 110(1):102-3. Epub 2018/03/15. doi: 10.5935/abc.20180009. PubMed PMID: 29538532; PubMed Central PMCID: PMCPMC5831311.

86. Collins JA, Wood ST, Nelson KJ, Rowe MA, Carlson CS, Chubinskaya S, et al. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes. J Biol Chem (2016) 291(13):6641-54. Epub 2016/01/23. doi: 10.1074/jbc.M115.693523. PubMed PMID: 26797130; PubMed Central PMCID: PMCPMC4807251.

87. Conti V, Corbi G, Simeon V, Russomanno G, Manzo V, Ferrara N, et al. Aging-related changes in oxidative stress response of human endothelial cells. Aging Clin Exp Res (2015) 27(4):547-53. Epub 2015/04/04. doi: 10.1007/s40520-015-0357-9. PubMed PMID: 25835220.

88. Cosin-Tomas M, Senserrich J, Arumi-Planas M, Alquezar C, Pallas M, Martin-Requero A, et al. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients (2019) 11(8). Epub 2019/08/03. doi: 10.3390/nu11081764. PubMed PMID: 31370365; PubMed Central PMCID: PMCPMC6723840.

89. Coskun PE, Busciglio J. Oxidative Stress and Mitochondrial Dysfunction in Down’s Syndrome: Relevance to Aging and Dementia. Curr Gerontol Geriatr Res (2012) 2012:383170. Epub 2012/05/23. doi: 10.1155/2012/383170. PubMed PMID: 22611387; PubMed Central PMCID: PMCPMC3350950.

90. Csiszar A, Podlutsky A, Podlutskaya N, Sonntag WE, Merlin SZ, Philipp EE, et al. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J Gerontol A Biol Sci Med Sci (2012) 67(8):841-52. Epub 2012/01/06. doi: 10.1093/gerona/glr216. PubMed PMID: 22219516; PubMed Central PMCID: PMCPMC3403864.

91. Cuesta S, Kireev R, Garcia C, Forman K, Vara E, Tresguerres JA. Effect of growth hormone treatment on pancreatic inflammation, oxidative stress, and apoptosis related to aging in SAMP8 mice. Rejuvenation Res (2011) 14(5):501-12. Epub 2011/10/01. doi: 10.1089/rej.2011.1166. PubMed PMID: 21958002.

92. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct (2012) 2012:646354. Epub 2011/10/07. doi: 10.1155/2012/646354. PubMed PMID: 21977319; PubMed Central PMCID: PMCPMC3184498.

93. Cui X, Ohtsu M, Mise N, Ikegami A, Mizuno A, Sakamoto T, et al. Heavy metal exposure, in combination with physical activity and aging, is related with oxidative stress in Japanese women from a rural agricultural community. Springerplus (2016) 5(1):885. Epub 2016/07/08. doi: 10.1186/s40064-016-2430-z. PubMed PMID: 27386333; PubMed Central PMCID: PMCPMC4920733.

94. Cui Y, Zhang B, Zhang R, Li C, Zhao Y, Ren Y, et al. [Effects of resveratrol on morphology and oxidative stress of brain tissues in aging mice]. Wei Sheng Yan Jiu (2013) 42(6):995-8, 1003. Epub 2014/01/28. PubMed PMID: 24459917.

95. Cunningham GM, Roman MG, Flores LC, Hubbard GB, Salmon AB, Zhang Y, et al. The paradoxical role of thioredoxin on oxidative stress and aging. Arch Biochem Biophys (2015) 576:32-8. Epub 2015/03/03. doi: 10.1016/ PubMed PMID: 25726727.

96. Czigler A, Toth L, Szarka N, Berta G, Amrein K, Czeiter E, et al. Hypertension Exacerbates Cerebrovascular Oxidative Stress Induced by Mild Traumatic Brain Injury: Protective Effects of the Mitochondria-Targeted Antioxidative Peptide SS-31. J Neurotrauma (2019) 36(23):3309-15. Epub 2019/07/04. doi: 10.1089/neu.2019.6439. PubMed PMID: 31266393; PubMed Central PMCID: PMCPMC6857460.

97. D’Alessandro A, Zolla L. The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. Expert Rev Proteomics (2011) 8(3):405-21. Epub 2011/06/18. doi: 10.1586/epr.11.13. PubMed PMID: 21679120.

98. da Cruz AC, Petronilho F, Heluany CC, Vuolo F, Miguel SP, Quevedo J, et al. Oxidative stress and aging: correlation with clinical parameters. Aging Clin Exp Res (2014) 26(1):7-12. Epub 2013/12/04. doi: 10.1007/s40520-013-0176-9. PubMed PMID: 24297216.

99. da Cunha MSB, Arruda SF. Tucum-do-Cerrado (Bactris setosa Mart.) May Promote Anti-Aging Effect by Upregulating SIRT1-Nrf2 Pathway and Attenuating Oxidative Stress and Inflammation. Nutrients (2017) 9(11). Epub 2017/11/15. doi: 10.3390/nu9111243. PubMed PMID: 29135935; PubMed Central PMCID: PMCPMC5707715.

100. da Silva AC, Salomon TB, Behling CS, Putti J, Hackenhaar FS, Alabarse PV, et al. Oxidative stress in the kidney of reproductive female rats during aging. Biogerontology (2013) 14(4):411-22. Epub 2013/07/04. doi: 10.1007/s10522-013-9440-9. PubMed PMID: 23820883.

101. da Silva Dias D, Moraes-Silva IC, Bernardes N, de Oliveira Brito-Monzani J, Stoyell-Conti FF, Machi JF, et al. Exercise training initiated at old stage of lifespan attenuates aging-and ovariectomy-induced cardiac and renal oxidative stress: Role of baroreflex. Exp Gerontol (2019) 124:110635. Epub 2019/06/14. doi: 10.1016/j.exger.2019.110635. PubMed PMID: 31195102.

102. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan (2014) 3:6. Epub 2014/05/27. doi: 10.1186/2046-2395-3-6. PubMed PMID: 24860647; PubMed Central PMCID: PMCPMC4013820.

103. Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Mobaraki K, Majidinia M. Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflugers Arch (2020) 472(2):169-78. Epub 2019/10/19. doi: 10.1007/s00424-019-02311-1. PubMed PMID: 31624955.

104. Dasuri K, Zhang L, Ebenezer P, Fernandez-Kim SO, Bruce-Keller AJ, Szweda LI, et al. Proteasome alterations during adipose differentiation and aging: links to impaired adipocyte differentiation and development of oxidative stress. Free Radic Biol Med (2011) 51(9):1727-35. Epub 2011/08/30. doi: 10.1016/j.freeradbiomed.2011.08.001. PubMed PMID: 21871954; PubMed Central PMCID: PMCPMC3378646.

105. Dato S, Crocco P, D’Aquila P, de Rango F, Bellizzi D, Rose G, et al. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci (2013) 14(8):16443-72. Epub 2013/08/24. doi: 10.3390/ijms140816443. PubMed PMID: 23965963; PubMed Central PMCID: PMCPMC3759920.

106. De Biase D, Piegari G, Prisco F, Cimmino I, Pirozzi C, Mattace Raso G, et al. Autophagy and NLRP3 inflammasome crosstalk in neuroinflammation in aged bovine brains. J Cell Physiol (2020) 235(6):5394-403. Epub 2020/01/07. doi: 10.1002/jcp.29426. PubMed PMID: 31903559.

107. De Ciuceis C, Salvetti M, Rossini C, Muiesan ML, Paini A, Duse S, et al. Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. J Hypertens (2014) 32(3):565-74. Epub 2014/01/01. doi: 10.1097/HJH.0000000000000067. PubMed PMID: 24378999.

108. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell (2016) 15(3):522-30. Epub 2016/03/13. doi: 10.1111/acel.12461. PubMed PMID: 26970090; PubMed Central PMCID: PMCPMC4854911.

109. Deepashree S, Niveditha S, Shivanandappa T, Ramesh SR. Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster. Biogerontology (2019) 20(4):497-513. Epub 2019/05/06. doi: 10.1007/s10522-019-09812-7. PubMed PMID: 31054025.

110. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, et al. Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol (2010) 88(3):273-84. Epub 2010/04/16. doi: 10.1139/Y10-001. PubMed PMID: 20393592.

111. Di Emidio G, Falone S, Vitti M, D’Alessandro AM, Vento M, Di Pietro C, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod (2014) 29(9):2006-17. Epub 2014/06/26. doi: 10.1093/humrep/deu160. PubMed PMID: 24963165.

112. Diaz A, Lopez-Grueso R, Gambini J, Monleon D, Mas-Bargues C, Abdelaziz KM, et al. Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. Oxid Med Cell Longev (2019) 2019:6734836. Epub 2019/05/16. doi: 10.1155/2019/6734836. PubMed PMID: 31089412; PubMed Central PMCID: PMCPMC6476064.

113. Dikalov SI, Dikalova AE. Contribution of mitochondrial oxidative stress to hypertension. Curr Opin Nephrol Hypertens (2016) 25(2):73-80. Epub 2015/12/31. doi: 10.1097/MNH.0000000000000198. PubMed PMID: 26717313; PubMed Central PMCID: PMCPMC4766975.

114. Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res (2020) 126(4):439-52. Epub 2019/12/20. doi: 10.1161/CIRCRESAHA.119.315767. PubMed PMID: 31852393; PubMed Central PMCID: PMCPMC7035170.

115. Ding R, Chen X, Wu D, Wei R, Hong Q, Shi S, et al. Effects of Aging on Kidney Graft Function, Oxidative Stress and Gene Expression after Kidney Transplantation. PLoS One (2013) 8(6):e65613. Epub 2013/07/05. doi: 10.1371/journal.pone.0065613. PubMed PMID: 23824036; PubMed Central PMCID: PMCPMC3688821.

116. Dinh QN, Chrissobolis S, Diep H, Chan CT, Ferens D, Drummond GR, et al. Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. Pharmacol Res (2017) 116:70-6. Epub 2016/12/27. doi: 10.1016/j.phrs.2016.12.032. PubMed PMID: 28017665.

117. Dinh QN, Drummond GR, Kemp-Harper BK, Diep H, De Silva TM, Kim HA, et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging (Albany NY) (2017) 9(6):1595-606. Epub 2017/07/01. doi: 10.18632/aging.101255. PubMed PMID: 28659507; PubMed Central PMCID: PMCPMC5509458.

118. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int (2014) 2014:406960. Epub 2014/08/20. doi: 10.1155/2014/406960. PubMed PMID: 25136585; PubMed Central PMCID: PMCPMC4124649.

119. Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci (2015) 6(4):570-81. Epub 2015/02/03. doi: 10.1021/cn500308h. PubMed PMID: 25642732; PubMed Central PMCID: PMCPMC4476071.

120. Dluzen DF, Kim Y, Bastian P, Zhang Y, Lehrmann E, Becker KG, et al. MicroRNAs Modulate Oxidative Stress in Hypertension through PARP-1 Regulation. Oxid Med Cell Longev (2017) 2017:3984280. Epub 2017/07/01. doi: 10.1155/2017/3984280. PubMed PMID: 28660007; PubMed Central PMCID: PMCPMC5474262.

121. Dominguez LJ, Galioto A, Pineo A, Ferlisi A, Ciaccio M, Putignano E, et al. Age, homocysteine, and oxidative stress: relation to hypertension and type 2 diabetes mellitus. J Am Coll Nutr (2010) 29(1):1-6. Epub 2010/07/03. doi: 10.1080/07315724.2010.10719810. PubMed PMID: 20595639.

122. Du J, Fan LM, Mai A, Li JM. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice. Br J Pharmacol (2013) 170(5):1064-77. Epub 2013/08/21. doi: 10.1111/bph.12336. PubMed PMID: 23957783; PubMed Central PMCID: PMCPMC3949654.

123. Du Z, Hu Y, Yang Y, Sun Y, Zhang S, Zhou T, et al. NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats. J Huazhong Univ Sci Technolog Med Sci (2012) 32(4):466-72. Epub 2012/08/14. doi: 10.1007/s11596-012-0081-z. PubMed PMID: 22886955.

124. Du Z, Yang Q, Liu L, Li S, Zhao J, Hu J, et al. NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats. Neuroscience (2015) 286:281-92. Epub 2014/12/17. doi: 10.1016/j.neuroscience.2014.11.061. PubMed PMID: 25499316.

125. Du Z, Yang Y, Hu Y, Sun Y, Zhang S, Peng W, et al. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats. Hear Res (2012) 287(1-2):15-24. Epub 2012/05/01. doi: 10.1016/j.heares.2012.04.012. PubMed PMID: 22543089.

126. Dziegielewska-Gesiak S, Stoltny D, Brozek A, Muc-Wierzgon M, Wysocka E. Are insulin-resistance and oxidative stress cause or consequence of aging. Exp Biol Med (Maywood) (2020):1535370220929621. Epub 2020/05/30. doi: 10.1177/1535370220929621. PubMed PMID: 32469639.

127. Eckers A, Altschmied J, Haendeler J. [Oxidative stress in endothelial cells and in diabetes type 2]. Z Gerontol Geriatr (2012) 45(2):90-4. Epub 2012/01/21. doi: 10.1007/s00391-011-0277-z. PubMed PMID: 22262415.

128. El Assar M, Angulo J, Rodriguez-Manas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med (2013) 65:380-401. Epub 2013/07/16. doi: 10.1016/j.freeradbiomed.2013.07.003. PubMed PMID: 23851032.

129. Eleutherio E, Brasil AA, Franca MB, de Almeida DSG, Rona GB, Magalhaes RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol (2018) 122(6):514-25. Epub 2018/05/29. doi: 10.1016/j.funbio.2017.12.003. PubMed PMID: 29801796.

130. Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, de Maranon AM, Abad-Jimenez Z, et al. The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Sci Rep (2018) 8(1):15862. Epub 2018/10/28. doi: 10.1038/s41598-018-34251-8. PubMed PMID: 30367115; PubMed Central PMCID: PMCPMC6203778.

131. Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev (2010) 3(3):168-77. Epub 2010/08/19. doi: 10.4161/oxim.3.3.12106. PubMed PMID: 20716941; PubMed Central PMCID: PMCPMC2952075.

132. Ewald CY. Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants (Basel) (2018) 7(10). Epub 2018/10/03. doi: 10.3390/antiox7100130. PubMed PMID: 30274229; PubMed Central PMCID: PMCPMC6210377.

133. Fannin J, Rice KM, Thulluri S, Arvapalli RK, Wehner P, Blough ER. The Effects of Aging on Indices of Oxidative Stress and Apoptosis in the Female Fischer 344/Nnia X Brown Norway/BiNia Rat Heart. Open Cardiovasc Med J (2013) 7:113-21. Epub 2013/12/21. doi: 10.2174/1874192401307010113. PubMed PMID: 24358061; PubMed Central PMCID: PMCPMC3866772.

134. Farruggio S, Cocomazzi G, Marotta P, Romito R, Surico D, Calamita G, et al. Genistein and 17beta-Estradiol Protect Hepatocytes from Fatty Degeneration by Mechanisms Involving Mitochondria, Inflammasome and Kinases Activation. Cell Physiol Biochem (2020) 54(3):401-16. Epub 2020/04/25. doi: 10.33594/000000227. PubMed PMID: 32330379.

135. Fazakas A, Szelenyi Z, Szenasi G, Nyiro G, Szabo PM, Patocs A, et al. Genetic predisposition in patients with hypertension and normal ejection fraction to oxidative stress. J Am Soc Hypertens (2016) 10(2):124-32. Epub 2016/01/19. doi: 10.1016/j.jash.2015.11.013. PubMed PMID: 26778769.

136. Feng L, Allen TK, Marinello WP, Murtha AP. Roles of Progesterone Receptor Membrane Component 1 in Oxidative Stress-Induced Aging in Chorion Cells. Reprod Sci (2019) 26(3):394-403. Epub 2018/05/23. doi: 10.1177/1933719118776790. PubMed PMID: 29783884; PubMed Central PMCID: PMCPMC6728555.

137. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol (2018) 15(9):505-22. Epub 2018/08/02. doi: 10.1038/s41569-018-0064-2. PubMed PMID: 30065258; PubMed Central PMCID: PMCPMC6146930.

138. Findeisen HM, Pearson KJ, Gizard F, Zhao Y, Qing H, Jones KL, et al. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One (2011) 6(4):e18532. Epub 2011/05/03. doi: 10.1371/journal.pone.0018532. PubMed PMID: 21533223; PubMed Central PMCID: PMCPMC3077372.

139. Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M, et al. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol (2013) 48(2):269-76. Epub 2012/11/13. doi: 10.1016/j.exger.2012.10.008. PubMed PMID: 23142245; PubMed Central PMCID: PMCPMC3557759.

140. Florencio GL, Goncalves AK, Canario AC, Silva MJ. [Aging: a reflection about physical activity and oxidative stress in women]. Acta Med Port (2011) 24 Suppl 4:983-8. Epub 2012/08/17. PubMed PMID: 22863508.

141. Flores LC, Ortiz M, Dube S, Hubbard GB, Lee S, Salmon A, et al. Thioredoxin, oxidative stress, cancer and aging. Longev Healthspan (2012) 1:4. Epub 2012/01/01. doi: 10.1186/2046-2395-1-4. PubMed PMID: 24764510; PubMed Central PMCID: PMCPMC3886257.

142. Floyd RA, Towner RA, He T, Hensley K, Maples KR. Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med (2011) 51(5):931-41. Epub 2011/05/10. doi: 10.1016/j.freeradbiomed.2011.04.014. PubMed PMID: 21549833; PubMed Central PMCID: PMCPMC3156308.

143. Franzke B, Schober-Halper B, Hofmann M, Oesen S, Tosevska A, Henriksen T, et al. Age and the effect of exercise, nutrition and cognitive training on oxidative stress – The Vienna Active Aging Study (VAAS), a randomized controlled trial. Free Radic Biol Med (2018) 121:69-77. Epub 2018/04/27. doi: 10.1016/j.freeradbiomed.2018.04.565. PubMed PMID: 29698742.

144. Fuentes E, Palomo I. Role of oxidative stress on platelet hyperreactivity during aging. Life Sci (2016) 148:17-23. Epub 2016/02/14. doi: 10.1016/j.lfs.2016.02.026. PubMed PMID: 26872977.

145. Gabe Y, Osanai O, Takema Y. The relationship between skin aging and steady state ultraweak photon emission as an indicator of skin oxidative stress in vivo. Skin Res Technol (2014) 20(3):315-21. Epub 2013/11/29. doi: 10.1111/srt.12121. PubMed PMID: 24283536.

146. Gambino V, De Michele G, Venezia O, Migliaccio P, Dall’Olio V, Bernard L, et al. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging. Aging Cell (2013) 12(3):435-45. Epub 2013/03/02. doi: 10.1111/acel.12060. PubMed PMID: 23448364; PubMed Central PMCID: PMCPMC3709138.

147. Gao T, Joyce BT, Liu L, Zheng Y, Dai Q, Zhang Z, et al. DNA methylation of oxidative stress genes and cancer risk in the Normative Aging Study. Am J Cancer Res (2016) 6(2):553-61. Epub 2016/05/18. PubMed PMID: 27186424; PubMed Central PMCID: PMCPMC4859680.

148. Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, et al. Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging. J Gerontol A Biol Sci Med Sci (2016) 71(1):40-9. Epub 2015/02/28. doi: 10.1093/gerona/glv005. PubMed PMID: 25720862.

149. Garg G, Singh S, Singh AK, Rizvi SI. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration. Appl Physiol Nutr Metab (2018) 43(5):437-44. Epub 2017/12/05. doi: 10.1139/apnm-2017-0578. PubMed PMID: 29199432.

150. Garrido A, Cruces J, Ceprian N, Vara E, de la Fuente M. Oxidative-Inflammatory Stress in Immune Cells from Adult Mice with Premature Aging. Int J Mol Sci (2019) 20(3). Epub 2019/02/15. doi: 10.3390/ijms20030769. PubMed PMID: 30759732; PubMed Central PMCID: PMCPMC6387005.

151. Garrido M, Terron MP, Rodriguez AB. Chrononutrition against oxidative stress in aging. Oxid Med Cell Longev (2013) 2013:729804. Epub 2013/07/19. doi: 10.1155/2013/729804. PubMed PMID: 23861994; PubMed Central PMCID: PMCPMC3703798.

152. Geissler S, Textor M, Schmidt-Bleek K, Klein O, Thiele M, Ellinghaus A, et al. In serum veritas-in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway. Cell Death Dis (2013) 4:e970. Epub 2013/12/21. doi: 10.1038/cddis.2013.501. PubMed PMID: 24357801; PubMed Central PMCID: PMCPMC3877568.

153. Ghaly A, Marsh DR. Aging-associated oxidative stress modulates the acute inflammatory response in skeletal muscle after contusion injury. Exp Gerontol (2010) 45(5):381-8. Epub 2010/03/10. doi: 10.1016/j.exger.2010.03.004. PubMed PMID: 20211238.

154. Ghatreh-Samani M, Esmaeili N, Soleimani M, Asadi-Samani M, Ghatreh-Samani K, Shirzad H. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging? Cent Eur J Immunol (2016) 41(1):116-24. Epub 2016/04/21. doi: 10.5114/ceji.2015.56973. PubMed PMID: 27095931; PubMed Central PMCID: PMCPMC4829813.

155. Abbasihormozi SH, Babapour V, Kouhkan A, Niasari Naslji A, Afraz K, Zolfaghary Z, et al. Stress Hormone and Oxidative Stress Biomarkers Link Obesity and Diabetes with Reduced Fertility Potential. Cell J (2019) 21(3):307-13. Epub 2019/06/19. doi: 10.22074/cellj.2019.6339. PubMed PMID: 31210437; PubMed Central PMCID: PMCPMC6582426.

156. Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol (2015) 4:296-307. Epub 2015/01/28. doi: 10.1016/j.redox.2015.01.008. PubMed PMID: 25625584; PubMed Central PMCID: PMCPMC4315937.

157. Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci (2020) 27(1):177-83. Epub 2020/01/01. doi: 10.1016/j.sjbs.2019.06.015. PubMed PMID: 31889833; PubMed Central PMCID: PMCPMC6933234.

158. Aghadavod E, Soleimani A, Amirani E, Gholriz Khatami P, Akasheh N, Sharafati Chaleshtori R, et al. Comparison Between Biomarkers of Kidney Injury, Inflammation, and Oxidative Stress in Patients with Diabetic Nephropathy and Type 2 Diabetes Mellitus. Iran J Kidney Dis (2020) 14(1):31-5. Epub 2020/03/12. PubMed PMID: 32156839.

159. Ahmed AA, Fedail JS, Musa HH, Kamboh AA, Sifaldin AZ, Musa TH. Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats. Pathophysiology (2015) 22(4):189-94. Epub 2015/09/01. doi: 10.1016/j.pathophys.2015.08.002. PubMed PMID: 26321624.

160. Al-Majdoub M, Spegel P, Bennet L. Metabolite profiling paradoxically reveals favorable levels of lipids, markers of oxidative stress and unsaturated fatty acids in a diabetes susceptible group of Middle Eastern immigrants. Acta Diabetol (2020) 57(5):597-603. Epub 2019/12/22. doi: 10.1007/s00592-019-01464-w. PubMed PMID: 31863321; PubMed Central PMCID: PMCPMC7160074.

161. Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition (2012) 28(7-8):e23-6. Epub 2012/05/19. doi: 10.1016/j.nut.2012.01.005. PubMed PMID: 22595450.

162. Al-Nimer MS, Al-Ani FS, Ali FS. Role of nitrosative and oxidative stress in neuropathy in patients with type 2 diabetes mellitus. J Neurosci Rural Pract (2012) 3(1):41-4. Epub 2012/02/22. doi: 10.4103/0976-3147.91932. PubMed PMID: 22346190; PubMed Central PMCID: PMCPMC3271613.

163. Alharby H, Abdelati T, Rizk M, Youssef E, Gaber N, Moghazy K, et al. Association of fasting glucagon-like peptide-1 with oxidative stress and subclinical atherosclerosis in type 2 diabetes. Diabetes Metab Syndr (2019) 13(2):1077-80. Epub 2019/07/25. doi: 10.1016/j.dsx.2019.01.031. PubMed PMID: 31336447.

164. Ali MI, Chen X, Didion SP. Heterozygous eNOS deficiency is associated with oxidative stress and endothelial dysfunction in diet-induced obesity. Physiol Rep (2015) 3(12). Epub 2015/12/15. doi: 10.14814/phy2.12630. PubMed PMID: 26660551; PubMed Central PMCID: PMCPMC4760452.

165. Aljwaid H, White DL, Collard KJ, Moody AJ, Pinkney JH. Non-transferrin-bound iron is associated with biomarkers of oxidative stress, inflammation and endothelial dysfunction in type 2 diabetes. J Diabetes Complications (2015) 29(7):943-9. Epub 2015/06/25. doi: 10.1016/j.jdiacomp.2015.05.017. PubMed PMID: 26104728.

166. Almogbel E, Rasheed N. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers. J Clin Diagn Res (2017) 11(2):BC21-BC5. Epub 2017/04/08. doi: 10.7860/JCDR/2017/23789.9417. PubMed PMID: 28384853; PubMed Central PMCID: PMCPMC5376809.

167. Altoum AEA, Abbas MY, Osman AL, Ahmed S, Babker AM. The Influence of Oral Multivitamins Supplementation on Selected Oxidative Stress Parameters and Lipid Profiles among Sudanese Patients with Type-2 Diabetes. Open Access Maced J Med Sci (2019) 7(5):775-8. Epub 2019/04/10. doi: 10.3889/oamjms.2019.137. PubMed PMID: 30962837; PubMed Central PMCID: PMCPMC6447348.

168. Ames PR, Batuca JR, Muncy IJ, De La Torre IG, Pascoe-Gonzales S, Guyer K, et al. Aspirin insensitive thromboxane generation is associated with oxidative stress in type 2 diabetes mellitus. Thromb Res (2012) 130(3):350-4. Epub 2012/04/24. doi: 10.1016/j.thromres.2012.03.025. PubMed PMID: 22521214.

169. Ann JY, Eo H, Lim Y. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes Nutr (2015) 10(6):46. Epub 2015/10/16. doi: 10.1007/s12263-015-0495-x. PubMed PMID: 26463593; PubMed Central PMCID: PMCPMC4604156.

170. Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes (2015) 39(1):44-9. Epub 2014/07/30. doi: 10.1016/j.jcjd.2014.03.002. PubMed PMID: 25065473.

171. Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Investigation of oxidative stress markers and antioxidant enzymes activity in newly diagnosed type 2 diabetes patients and healthy subjects, association with IL-6 level. J Diabetes Metab Disord (2019) 18(2):437-43. Epub 2020/01/01. doi: 10.1007/s40200-019-00437-8. PubMed PMID: 31890669; PubMed Central PMCID: PMCPMC6915251.

172. Arana C, Moreno-Fernandez AM, Gomez-Moreno G, Morales-Portillo C, Serrano-Olmedo I, de la Cuesta Mayor MC, et al. Increased salivary oxidative stress parameters in patients with type 2 diabetes: Relation with periodontal disease. Endocrinol Diabetes Nutr (2017) 64(5):258-64. Epub 2017/05/13. doi: 10.1016/j.endinu.2017.03.005. PubMed PMID: 28495321.

173. Araujo Sampaio F, Monte Feitosa M, Hermes Sales C, Costa e Silva DM, Climaco Cruz KJ, Oliveira FE, et al. Influence of magnesium on biochemical parameters of iron and oxidative stress in patients with type 2 diabetes. Nutr Hosp (2014) 30(3):570-6. Epub 2014/09/23. doi: 10.3305/nh.2014.30.3.7333. PubMed PMID: 25238833.

174. Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, Qorbani M, Larijani B, Baradar Jalili R. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru (2019) 27(2):827-37. Epub 2019/11/07. doi: 10.1007/s40199-019-00302-2. PubMed PMID: 31691101; PubMed Central PMCID: PMCPMC6895351.

175. Asbaghi O, Fouladvand F, Gonzalez MJ, Aghamohammadi V, Choghakhori R, Abbasnezhad A. The effect of green tea on C-reactive protein and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Complement Ther Med (2019) 46:210-6. Epub 2019/09/15. doi: 10.1016/j.ctim.2019.08.019. PubMed PMID: 31519281.

176. Asemi Z, Zare Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab (2013) 63(1-2):1-9. Epub 2013/08/01. doi: 10.1159/000349922. PubMed PMID: 23899653.

177. Aslam F, Iqbal S, Nasir M, Anjum AA. White Sesame Seed Oil Mitigates Blood Glucose Level, Reduces Oxidative Stress, and Improves Biomarkers of Hepatic and Renal Function in Participants with Type 2 Diabetes Mellitus. J Am Coll Nutr (2019) 38(3):235-46. Epub 2018/09/28. doi: 10.1080/07315724.2018.1500183. PubMed PMID: 30260748.

178. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J (2016) 24(5):547-53. Epub 2016/10/19. doi: 10.1016/j.jsps.2015.03.013. PubMed PMID: 27752226; PubMed Central PMCID: PMCPMC5059829.

179. Atefi M, Pishdad GR, Faghih S. The effects of canola and olive oils on insulin resistance, inflammation and oxidative stress in women with type 2 diabetes: a randomized and controlled trial. J Diabetes Metab Disord (2018) 17(2):85-91. Epub 2019/03/29. doi: 10.1007/s40200-018-0343-9. PubMed PMID: 30918840; PubMed Central PMCID: PMCPMC6405399.

180. Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications (2016) 30(4):723-7. Epub 2016/03/10. doi: 10.1016/j.jdiacomp.2016.01.003. PubMed PMID: 26954484.

181. Ayeleso TB, Ramachela K, Mukwevho E. Aqueous-Methanol Extracts of Orange-Fleshed Sweet Potato (Ipomoeabatatas) Ameliorate Oxidative Stress and Modulate Type 2 Diabetes Associated Genes in Insulin Resistant C2C12 Cells. Molecules (2018) 23(8). Epub 2018/08/22. doi: 10.3390/molecules23082058. PubMed PMID: 30126082; PubMed Central PMCID: PMCPMC6222700.

182. Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of Cinnamon, Cardamom, Saffron, and Ginger Consumption on Markers of Glycemic Control, Lipid Profile, Oxidative Stress, and Inflammation in Type 2 Diabetes Patients. Rev Diabet Stud (2014) 11(3-4):258-66. Epub 2015/07/16. doi: 10.1900/RDS.2014.11.258. PubMed PMID: 26177486; PubMed Central PMCID: PMCPMC5397291.

183. Azizi-Soleiman F, Jazayeri S, Eghtesadi S, Rajab A, Heidari I, Vafa MR, et al. Effects of pure eicosapentaenoic and docosahexaenoic acids on oxidative stress, inflammation and body fat mass in patients with type 2 diabetes. Int J Prev Med (2013) 4(8):922-8. Epub 2013/09/21. PubMed PMID: 24049619; PubMed Central PMCID: PMCPMC3775170.

184. Azul L, Leandro A, Boroumand P, Klip A, Seica R, Sena CM. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic Biol Med (2020) 146:264-74. Epub 2019/11/08. doi: 10.1016/j.freeradbiomed.2019.11.002. PubMed PMID: 31698080.

185. Bahadoran Z, Mirmiran P, Hosseinpanah F, Hedayati M, Hosseinpour-Niazi S, Azizi F. Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. Eur J Clin Nutr (2011) 65(8):972-7. Epub 2011/05/12. doi: 10.1038/ejcn.2011.59. PubMed PMID: 21559038.

186. Baig S, Shabeer M, Parvaresh Rizi E, Agarwal M, Lee MH, Ooi DSQ, et al. Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation. BMJ Open Diabetes Res Care (2020) 8(1). Epub 2020/02/13. doi: 10.1136/bmjdrc-2019-000945. PubMed PMID: 32049633; PubMed Central PMCID: PMCPMC7039582.

187. Bandeira Sde M, Guedes Gda S, da Fonseca LJ, Pires AS, Gelain DP, Moreira JC, et al. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev (2012) 2012:819310. Epub 2012/12/22. doi: 10.1155/2012/819310. PubMed PMID: 23259029; PubMed Central PMCID: PMCPMC3509371.

188. Bathina S, Srinivas N, Das UN. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats. Biochem Biophys Res Commun (2017) 486(2):406-13. Epub 2017/03/21. doi: 10.1016/j.bbrc.2017.03.054. PubMed PMID: 28315336.

189. Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. Atherosclerosis (2014) 237(2):562-7. Epub 2014/12/03. doi: 10.1016/j.atherosclerosis.2014.10.006. PubMed PMID: 25463089.

190. Bazyar H, Maghsoumi-Norouzabad L, Yarahmadi M, Gholinezhad H, Moradi L, Salehi P, et al. The Impacts of Synbiotic Supplementation on Periodontal Indices and Biomarkers of Oxidative Stress in Type 2 Diabetes Mellitus Patients with Chronic Periodontitis Under Non-Surgical Periodontal Therapy. A Double-Blind, Placebo-Controlled Trial. Diabetes Metab Syndr Obes (2020) 13:19-29. Epub 2020/02/06. doi: 10.2147/DMSO.S230060. PubMed PMID: 32021348; PubMed Central PMCID: PMCPMC6954633.

191. Belba A, Cortelazzo A, Andrea G, Durante J, Nigi L, Dotta F, et al. Erectile dysfunction and diabetes: Association with the impairment of lipid metabolism and oxidative stress. Clin Biochem (2016) 49(1-2):70-8. Epub 2015/10/27. doi: 10.1016/j.clinbiochem.2015.10.004. PubMed PMID: 26500005.

192. Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: A randomized placebo-controlled study. J Cell Mol Med (2020) 24(5):2832-46. Epub 2020/01/25. doi: 10.1111/jcmm.14834. PubMed PMID: 31975558; PubMed Central PMCID: PMCPMC7077543.

193. Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) (2017) 8:347. Epub 2018/01/13. doi: 10.3389/fendo.2017.00347. PubMed PMID: 29326655; PubMed Central PMCID: PMCPMC5737033.

194. Bigagli E, Lodovici M. Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. Oxid Med Cell Longev (2019) 2019:5953685. Epub 2019/06/20. doi: 10.1155/2019/5953685. PubMed PMID: 31214280; PubMed Central PMCID: PMCPMC6535859.

195. Bigagli E, Luceri C, Dicembrini I, Tatti L, Scavone F, Giovannelli L, et al. Effect of Dipeptidyl-Peptidase 4 Inhibitors on Circulating Oxidative Stress Biomarkers in Patients with Type 2 Diabetes Mellitus. Antioxidants (Basel) (2020) 9(3). Epub 2020/03/15. doi: 10.3390/antiox9030233. PubMed PMID: 32168854; PubMed Central PMCID: PMCPMC7139569.

196. Bogdanov P, Sola-Adell C, Hernandez C, Garcia-Ramirez M, Sampedro J, Simo-Servat O, et al. Calcium dobesilate prevents the oxidative stress and inflammation induced by diabetes in the retina of db/db mice. J Diabetes Complications (2017) 31(10):1481-90. Epub 2017/08/30. doi: 10.1016/j.jdiacomp.2017.07.009. PubMed PMID: 28847447.

197. Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem (2012) 68(4):701-11. Epub 2012/02/22. doi: 10.1007/s13105-012-0154-2. PubMed PMID: 22351038.

198. Bondor CI, Potra AR, Moldovan D, Rusu CC, Ciorba Pop M, Muresan A, et al. Relationship of adiponectin to markers of oxidative stress in type 2 diabetic patients: influence of incipient diabetes-associated kidney disease. Int Urol Nephrol (2015) 47(7):1173-80. Epub 2015/05/15. doi: 10.1007/s11255-015-1004-2. PubMed PMID: 25971352.

199. Bondor CI, Potra AR, Rusu CC, Moldovan D, Bolboaca SD, Kacso IM. Relationship of Oxidative Stress to Urinary Angiotensin Converting Enzyme 2 in Type 2 Diabetes Mellitus Patients. Acta Endocrinol (Buchar) (2016) 12(2):150-6. Epub 2016/04/01. doi: 10.4183/aeb.2016.150. PubMed PMID: 31149080; PubMed Central PMCID: PMCPMC6535290.

200. Bouderba S, Sanchez-Martin C, Villanueva GR, Detaille D, Koceir EA. Beneficial effects of silibinin against the progression of metabolic syndrome, increased oxidative stress, and liver steatosis in Psammomys obesus, a relevant animal model of human obesity and diabetes. J Diabetes (2014) 6(2):184-92. Epub 2013/08/21. doi: 10.1111/1753-0407.12083. PubMed PMID: 23953934.

201. Brito R, Castillo G, Gonzalez J, Valls N, Rodrigo R. Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp Clin Endocrinol Diabetes (2015) 123(6):325-35. Epub 2015/04/29. doi: 10.1055/s-0035-1548765. PubMed PMID: 25918881.

202. Burgos-Moron E, Abad-Jimenez Z, Maranon AM, Iannantuoni F, Escribano-Lopez I, Lopez-Domenech S, et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med (2019) 8(9). Epub 2019/09/07. doi: 10.3390/jcm8091385. PubMed PMID: 31487953; PubMed Central PMCID: PMCPMC6780404.

203. Butaeva SG, Ametov AS, Bugrov AV, Dolgov VV. [Glycemic variability and oxidative stress in patients with type 2 diabetes mellitus during combined glucose-lowering therapy]. Ter Arkh (2017) 89(10):36-9. Epub 2017/11/25. doi: 10.17116/terarkh2017891036-39. PubMed PMID: 29171468.

204. Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta (2012) 1822(5):729-36. Epub 2011/12/22. doi: 10.1016/j.bbadis.2011.12.003. PubMed PMID: 22186191.

205. Casoinic F, Sampelean D, Buzoianu AD, Hancu N, Baston D. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Steatohepatitis. Rom J Intern Med (2016) 54(4):228-36. Epub 2016/12/22. doi: 10.1515/rjim-2016-0035. PubMed PMID: 28002036.

206. Cejvanovic V, Asferg C, Kjaer LK, Andersen UB, Linneberg A, Frystyk J, et al. Markers of oxidative stress in obese men with and without hypertension. Scand J Clin Lab Invest (2016) 76(8):620-5. Epub 2016/09/27. doi: 10.1080/00365513.2016.1230776. PubMed PMID: 27666677.

207. Chaiyasut C, Sivamaruthi BS, Pengkumsri N, Keapai W, Kesika P, Saelee M, et al. Germinated Thai Black Rice Extract Protects Experimental Diabetic Rats from Oxidative Stress and Other Diabetes-Related Consequences. Pharmaceuticals (Basel) (2016) 10(1). Epub 2016/12/31. doi: 10.3390/ph10010003. PubMed PMID: 28036014; PubMed Central PMCID: PMCPMC5374407.

208. Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract (2011) 93(1):56-62. Epub 2010/12/15. doi: 10.1016/j.diabres.2010.11.030. PubMed PMID: 21146883.

209. Chandra K, Jain V, Jabin A, Dwivedi S, Joshi S, Ahmad S, et al. Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: A randomized, double-blind placebo study. Phytother Res (2020) 34(7):1609-18. Epub 2020/02/07. doi: 10.1002/ptr.6624. PubMed PMID: 32026537.

210. Chang CM, Hsieh CJ, Huang JC, Huang IC. Acute and chronic fluctuations in blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta Diabetol (2012) 49 Suppl 1:S171-7. Epub 2012/05/02. doi: 10.1007/s00592-012-0398-x. PubMed PMID: 22547264.

211. Chang YC, Chuang LM. The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res (2010) 2(3):316-31. Epub 2010/07/01. PubMed PMID: 20589170; PubMed Central PMCID: PMCPMC2892404.

212. Chatziralli IP, Theodossiadis G, Dimitriadis P, Charalambidis M, Agorastos A, Migkos Z, et al. The Effect of Vitamin E on Oxidative Stress Indicated by Serum Malondialdehyde in Insulin-dependent Type 2 Diabetes Mellitus Patients with Retinopathy. Open Ophthalmol J (2017) 11:51-8. Epub 2017/06/02. doi: 10.2174/1874364101711010051. PubMed PMID: 28567166; PubMed Central PMCID: PMCPMC5420190.

213. Chen B, Zhao Q, Ni R, Tang F, Shan L, Cepinskas I, et al. Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovasc Diabetol (2014) 13:88. Epub 2014/06/03. doi: 10.1186/1475-2840-13-88. PubMed PMID: 24886224; PubMed Central PMCID: PMCPMC4045988.

214. Chen L, Liu C, Gao J, Xie Z, Chan LWC, Keating DJ, et al. Inhibition of Miro1 disturbs mitophagy and pancreatic beta-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes. Oncotarget (2017) 8(53):90693-705. Epub 2017/12/07. doi: 10.18632/oncotarget.20963. PubMed PMID: 29207597; PubMed Central PMCID: PMCPMC5710878.

215. Chen SC, Song GY, Sun Y, Liu N. [The relationship between oxidative stress and endothelial progenitor cells count in the first-degree relatives of diabetes mellitus]. Zhonghua Nei Ke Za Zhi (2012) 51(3):197-200. Epub 2012/07/12. PubMed PMID: 22781892.

216. Chen SC, Ueng KC, Lee SH, Sun KT, Lee MC. Effect of t’ai chi exercise on biochemical profiles and oxidative stress indicators in obese patients with type 2 diabetes. J Altern Complement Med (2010) 16(11):1153-9. Epub 2010/10/27. doi: 10.1089/acm.2009.0560. PubMed PMID: 20973735.

217. Chen X, Yuan H, Shi F, Zhu Y. Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high-fat diet and streptozotocin. J Sci Food Agric (2020) 100(5):2074-81. Epub 2019/12/27. doi: 10.1002/jsfa.10230. PubMed PMID: 31875960.

218. Chen Y, Zhou B, Yu Z, Yuan P, Sun T, Gong J, et al. Baicalein Alleviates Erectile Dysfunction Associated With Streptozotocin-Induced Type I Diabetes by Ameliorating Endothelial Nitric Oxide Synthase Dysfunction, Inhibiting Oxidative Stress and Fibrosis. J Sex Med (2020). Epub 2020/06/27. doi: 10.1016/j.jsxm.2020.04.390. PubMed PMID: 32586748.

219. Chen YY, Wu TT, Ho CY, Yeh TC, Sun GC, Kung YH, et al. Dapagliflozin Prevents NOX- and SGLT2-Dependent Oxidative Stress in Lens Cells Exposed to Fructose-Induced Diabetes Mellitus. Int J Mol Sci (2019) 20(18). Epub 2019/09/08. doi: 10.3390/ijms20184357. PubMed PMID: 31491943; PubMed Central PMCID: PMCPMC6770809.

220. Chen Z, Gong L, Zhang P, Li Y, Liu B, Zhang L, et al. Epigenetic Down-Regulation of Sirt 1 via DNA Methylation and Oxidative Stress Signaling Contributes to the Gestational Diabetes Mellitus-Induced Fetal Programming of Heart Ischemia-Sensitive Phenotype in Late Life. Int J Biol Sci (2019) 15(6):1240-51. Epub 2019/06/22. doi: 10.7150/ijbs.33044. PubMed PMID: 31223283; PubMed Central PMCID: PMCPMC6567811.

221. Choi SW, Yeung VT, Benzie IF. Heme oxygenase microsatellite polymorphism, oxidative stress, glycemic control, and complication development in type 2 diabetes patients. Free Radic Biol Med (2012) 53(1):60-3. Epub 2012/05/16. doi: 10.1016/j.freeradbiomed.2012.04.017. PubMed PMID: 22583702.

222. Chou ST, Tseng ST. Oxidative stress markers in type 2 diabetes patients with diabetic nephropathy. Clin Exp Nephrol (2017) 21(2):283-92. Epub 2016/05/29. doi: 10.1007/s10157-016-1283-7. PubMed PMID: 27233502.

223. Clerici C, Nardi E, Battezzati PM, Asciutti S, Castellani D, Corazzi N, et al. Novel soy germ pasta improves endothelial function, blood pressure, and oxidative stress in patients with type 2 diabetes. Diabetes Care (2011) 34(9):1946-8. Epub 2011/07/27. doi: 10.2337/dc11-0495. PubMed PMID: 21788625; PubMed Central PMCID: PMCPMC3161297.

224. Coban N, Onat A, Yildirim O, Can G, Erginel-Unaltuna N. Oxidative stress-mediated (sex-specific) loss of protection against type-2 diabetes by macrophage migration inhibitory factor (MIF)-173G/C polymorphism. Clin Chim Acta (2015) 438:1-6. Epub 2014/08/12. doi: 10.1016/j.cca.2014.07.037. PubMed PMID: 25108206.

225. Conti FF, Brito Jde O, Bernardes N, Dias Dda S, Sanches IC, Malfitano C, et al. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc Disord (2014) 14:185. Epub 2014/12/17. doi: 10.1186/1471-2261-14-185. PubMed PMID: 25495455; PubMed Central PMCID: PMCPMC4279597.

226. Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, et al. Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With Target HbA1c Levels. Diabetes (2017) 66(9):2472-82. Epub 2017/06/22. doi: 10.2337/db17-0294. PubMed PMID: 28634176.

227. Crujeiras AB, Diaz-Lagares A, Carreira MC, Amil M, Casanueva FF. Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic Res (2013) 47(4):243-56. Epub 2013/02/16. doi: 10.3109/10715762.2013.772604. PubMed PMID: 23409968.

228. D’Archivio M, Annuzzi G, Vari R, Filesi C, Giacco R, Scazzocchio B, et al. Predominant role of obesity/insulin resistance in oxidative stress development. Eur J Clin Invest (2012) 42(1):70-8. Epub 2011/06/18. doi: 10.1111/j.1365-2362.2011.02558.x. PubMed PMID: 21679180.

229. D’Souza JM, D’Souza RP, Vijin VF, Shetty A, Arunachalam C, Pai VR, et al. High predictive ability of glycated hemoglobin on comparison with oxidative stress markers in assessment of chronic vascular complications in type 2 diabetes mellitus. Scand J Clin Lab Invest (2016) 76(1):51-7. Epub 2015/10/24. doi: 10.3109/00365513.2015.1092048. PubMed PMID: 26494020.

230. Dabhi B, Mistry KN. Oxidative stress and its association with TNF-alpha-308 G/C and IL-1alpha-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene (2015) 562(2):197-202. Epub 2015/03/04. doi: 10.1016/j.gene.2015.02.069. PubMed PMID: 25732517.

231. Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS. Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Exp Mol Med (2010) 42(4):245-53. Epub 2010/03/05. doi: 10.3858/emm.2010.42.4.033. PubMed PMID: 20200475; PubMed Central PMCID: PMCPMC2859324.

232. Darroudi S, Fereydouni N, Tayefi M, Ahmadnezhad M, Zamani P, Tayefi B, et al. Oxidative stress and inflammation, two features associated with a high percentage body fat, and that may lead to diabetes mellitus and metabolic syndrome. Biofactors (2019) 45(1):35-42. Epub 2018/12/19. doi: 10.1002/biof.1459. PubMed PMID: 30561055.

233. Darvish Damavandi R, Mousavi SN, Shidfar F, Mohammadi V, Rajab A, Hosseini S, et al. Effects of Daily Consumption of Cashews on Oxidative Stress and Atherogenic Indices in Patients with Type 2 Diabetes: A Randomized, Controlled-Feeding Trial. Int J Endocrinol Metab (2019) 17(1):e70744. Epub 2019/03/19. doi: 10.5812/ijem.70744. PubMed PMID: 30881468; PubMed Central PMCID: PMCPMC6408729.

234. Das P, Biswas S, Mukherjee S, Bandyopadhyay SK. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus. Mymensingh Med J (2016) 25(1):148-52. Epub 2016/03/05. PubMed PMID: 26931265.

235. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. J Diabetes Res (2017) 2017:4826724. Epub 2017/09/16. doi: 10.1155/2017/4826724. PubMed PMID: 28913364; PubMed Central PMCID: PMCPMC5585663.

236. de Oliveira VN, Bessa A, Jorge ML, Oliveira RJ, de Mello MT, De Agostini GG, et al. The effect of different training programs on antioxidant status, oxidative stress, and metabolic control in type 2 diabetes. Appl Physiol Nutr Metab (2012) 37(2):334-44. Epub 2012/03/31. doi: 10.1139/h2012-004. PubMed PMID: 22458821.

237. Deng X, Huang W, Peng J, Zhu TT, Sun XL, Zhou XY, et al. Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling. Inflammation (2018) 41(1):260-75. Epub 2017/11/04. doi: 10.1007/s10753-017-0685-3. PubMed PMID: 29098483.

238. Derosa G, D’Angelo A, Maffioli P. Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes. Nutrition (2020) 73:110700. Epub 2020/02/18. doi: 10.1016/j.nut.2019.110700. PubMed PMID: 32065880.

239. Devries JH. Comment on: Rizzo et al. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care 2012;35:2076-2082. Diabetes Care (2013) 36(1):e12. Epub 2012/12/25. doi: 10.2337/dc12-1218. PubMed PMID: 23264295; PubMed Central PMCID: PMCPMC3526220.

240. Di Naso FC, Simoes Dias A, Porawski M, Marroni NA. Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes. Exp Diabetes Res (2011) 2011:754132. Epub 2011/03/26. doi: 10.1155/2011/754132. PubMed PMID: 21437212; PubMed Central PMCID: PMCPMC3061218.

241. Diaw M, Pialoux V, Martin C, Samb A, Diop S, Faes C, et al. Sickle Cell Trait Worsens Oxidative Stress, Abnormal Blood Rheology, and Vascular Dysfunction in Type 2 Diabetes. Diabetes Care (2015) 38(11):2120-7. Epub 2015/09/02. doi: 10.2337/dc15-0699. PubMed PMID: 26324331; PubMed Central PMCID: PMCPMC4613921.

242. Diaz-Ruiz A, Guzman-Ruiz R, Moreno NR, Garcia-Rios A, Delgado-Casado N, Membrives A, et al. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxid Redox Signal (2015) 23(7):597-612. Epub 2015/02/26. doi: 10.1089/ars.2014.5939. PubMed PMID: 25714483; PubMed Central PMCID: PMCPMC4554552.

243. Dong D, Yu J, Wu Y, Fu N, Villela NA, Yang P. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress. Biochem Biophys Res Commun (2015) 467(2):407-12. Epub 2015/10/03. doi: 10.1016/j.bbrc.2015.09.137. PubMed PMID: 26427872; PubMed Central PMCID: PMCPMC4618162.

244. Dos Santos JM, de Oliveira DS, Moreli ML, Benite-Ribeiro SA. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes. Mol Cell Biochem (2018) 449(1-2):251-5. Epub 2018/04/22. doi: 10.1007/s11010-018-3361-5. PubMed PMID: 29679277.

245. Duan Y, Wang L, Han L, Wang B, Sun H, Chen L, et al. Exposure to phthalates in patients with diabetes and its association with oxidative stress, adiponectin, and inflammatory cytokines. Environ Int (2017) 109:53-63. Epub 2017/09/25. doi: 10.1016/j.envint.2017.09.002. PubMed PMID: 28938100.

246. Dwivedi DK, Jena GB. Glibenclamide protects against thioacetamide-induced hepatic damage in Wistar rat: investigation on NLRP3, MMP-2, and stellate cell activation. Naunyn Schmiedebergs Arch Pharmacol (2018) 391(11):1257-74. Epub 2018/08/02. doi: 10.1007/s00210-018-1540-2. PubMed PMID: 30066023.

247. Dwivedi DK, Jena GB. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn Schmiedebergs Arch Pharmacol (2020) 393(4):705-16. Epub 2019/12/14. doi: 10.1007/s00210-019-01773-5. PubMed PMID: 31834465.

248. Dwivedi DK, Jena GB. Diethylnitrosamine and thioacetamide-induced hepatic damage and early carcinogenesis in rats: Role of Nrf2 activator dimethyl fumarate and NLRP3 inhibitor glibenclamide. Biochem Biophys Res Commun (2020) 522(2):381-7. Epub 2019/11/26. doi: 10.1016/j.bbrc.2019.11.100. PubMed PMID: 31761320.

249. Dzugkoev SG, Dzugkoeva FS, Mozhaeva IV, Margieva OI, Karchaidze NM. [Mechanisms of Afobazole Influence on the No Producing Endothelium Function and Indicators of Oxidative Stress in Rats with Experimental Diabetes Mellitus.]. Eksp Klin Farmakol (2016) 79(5):15-9. Epub 2016/08/01. PubMed PMID: 29782774.

250. Earle KA, Zitouni K, Nourooz-Zadeh J. Lipopolysaccharide-Induced VEGF Production and Ambient Oxidative Stress in Type 2 Diabetes. J Clin Endocrinol Metab (2019) 104(1):1-6. Epub 2018/07/23. doi: 10.1210/jc.2018-00836. PubMed PMID: 30032215.

251. Ebrahim HA, Alzamil NM, Al-Ani B, Haidara MA, Kamar SS, Dawood AF. Suppression of knee joint osteoarthritis induced secondary to type 2 diabetes mellitus in rats by resveratrol: role of glycated haemoglobin and hyperlipidaemia and biomarkers of inflammation and oxidative stress. Arch Physiol Biochem (2020):1-8. Epub 2020/06/05. doi: 10.1080/13813455.2020.1771378. PubMed PMID: 32497450.

252. Eftekhari MH, Akbarzadeh M, Dabbaghmanesh MH, Hassanzadeh J. The effect of calcitriol on lipid profile and oxidative stress in hyperlipidemic patients with type 2 diabetes mellitus. ARYA Atheroscler (2014) 10(2):82-8. Epub 2014/08/28. PubMed PMID: 25161675; PubMed Central PMCID: PMCPMC4144370.

253. El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem (2019) 26(22):4145-65. Epub 2017/10/07. doi: 10.2174/0929867324666171005114456. PubMed PMID: 28982316.

254. El Midaoui A, Fantus IG, Ait Boughrous A, Couture R. Beneficial Effects of Alpha-Lipoic Acid on Hypertension, Visceral Obesity, UCP-1 Expression and Oxidative Stress in Zucker Diabetic Fatty Rats. Antioxidants (Basel) (2019) 8(12). Epub 2020/01/01. doi: 10.3390/antiox8120648. PubMed PMID: 31888243; PubMed Central PMCID: PMCPMC6943617.

255. El-Horany HE, Abd-Ellatif RN, Watany M, Hafez YM, Okda HI. NLRP3 expression and urinary HSP72 in relation to biomarkers of inflammation and oxidative stress in diabetic nephropathy patients. IUBMB Life (2017) 69(8):623-30. Epub 2017/06/21. doi: 10.1002/iub.1645. PubMed PMID: 28631886.

256. El-Mesallamy H, Hamdy N, Suwailem S, Mostafa S. Oxidative stress and platelet activation: markers of myocardial infarction in type 2 diabetes mellitus. Angiology (2010) 61(1):14-8. Epub 2009/09/18. doi: 10.1177/0003319709340891. PubMed PMID: 19759031.

257. El-Refaei MF, Abduljawad SH, Alghamdi AH. Alternative Medicine in Diabetes – Role of Angiogenesis, Oxidative Stress, and Chronic Inflammation. Rev Diabet Stud (2014) 11(3-4):231-44. Epub 2015/07/16. doi: 10.1900/RDS.2014.11.231. PubMed PMID: 26177484; PubMed Central PMCID: PMCPMC5397289.

258. Elahi M, Hasan Z, Motoi Y, Matsumoto SE, Ishiguro K, Hattori N. Region-Specific Vulnerability to Oxidative Stress, Neuroinflammation, and Tau Hyperphosphorylation in Experimental Diabetes Mellitus Mice. J Alzheimers Dis (2016) 51(4):1209-24. Epub 2016/03/01. doi: 10.3233/JAD-150820. PubMed PMID: 26923011.

259. Enosawa S, Dozen M, Tada Y, Hirasawa K. Electron Therapy Attenuated Elevated Alanine Aminotransferase and Oxidative Stress Values in Type 2 Diabetes-Induced Nonalcoholic Steatohepatitis of Rats. Cell Med (2013) 6(1-2):63-73. Epub 2013/12/30. doi: 10.3727/215517913X674225. PubMed PMID: 26858882; PubMed Central PMCID: PMCPMC4735888.

260. Eraldemir FC, Uren N, Kum T, Erbay B, Sahin D, Ergul E, et al. Association of Serum Paraoxonase 1 Activities, Polymorphisms and Oxidative Stress in Breast Cancer Patients with Type 2 Diabetes Mellitus. J Med Biochem (2019) 38(3):368-75. Epub 2019/06/04. doi: 10.2478/jomb-2018-0043. PubMed PMID: 31156348; PubMed Central PMCID: PMCPMC6534952.

261. Erukainure OL, Narainpersad N, Singh M, Olakunle S, Islam MS. Clerodendrum volubile inhibits key enzymes linked to type 2 diabetes but induces cytotoxicity in human embryonic kidney (HEK293) cells via exacerbated oxidative stress and proinflammation. Biomed Pharmacother (2018) 106:1144-52. Epub 2018/08/19. doi: 10.1016/j.biopha.2018.07.013. PubMed PMID: 30119181.

262. Escribano-Lopez I, de Maranon AM, Iannantuoni F, Lopez-Domenech S, Abad-Jimenez Z, Diaz P, et al. The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes. J Clin Med (2019) 8(9). Epub 2019/08/31. doi: 10.3390/jcm8091322. PubMed PMID: 31466264; PubMed Central PMCID: PMCPMC6780723.

263. Esteghamati A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M, Hedayati M, et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr (2013) 32(2):179-85. Epub 2012/09/12. doi: 10.1016/j.clnu.2012.08.006. PubMed PMID: 22963881.

264. Faghihi T, Radfar M, Barmal M, Amini P, Qorbani M, Abdollahi M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther (2014) 21(6):491-5. Epub 2013/05/02. doi: 10.1097/MJT.0b013e318269175f. PubMed PMID: 23633679.

265. Fantin Sde S, Wainstein MV, Polanczyk CA, Ledur P, Lazzari CM, Klein C, et al. Inflammatory and oxidative stress markers after intravenous insulin in percutaneous coronary intervention with stent in type 2 diabetes mellitus: a randomized controlled trial. J Clin Endocrinol Metab (2011) 96(2):478-85. Epub 2010/11/19. doi: 10.1210/jc.2010-0256. PubMed PMID: 21084403.

266. Farabi SS, Carley DW, Smith D, Quinn L. Impact of exercise on diurnal and nocturnal markers of glycaemic variability and oxidative stress in obese individuals with type 2 diabetes or impaired glucose tolerance. Diab Vasc Dis Res (2015) 12(5):381-5. Epub 2015/05/23. doi: 10.1177/1479164115579003. PubMed PMID: 25994591.

267. Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv Exp Med Biol (2018) 1061:19-44. Epub 2018/06/30. doi: 10.1007/978-981-10-8684-7_3. PubMed PMID: 29956204.

268. Farrokhian A, Raygan F, Soltani A, Tajabadi-Ebrahimi M, Sharifi Esfahani M, Karami AA, et al. The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: a Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins (2019) 11(1):133-42. Epub 2017/10/29. doi: 10.1007/s12602-017-9343-1. PubMed PMID: 29079990.

269. Fathi S, Borzouei S, Goodarzi MT, Poorolajal J, Ahmadi-Motamayel F. Evaluation of Salivary Antioxidants and Oxidative Stress Markers in Type 2 Diabetes Mellitus: A Retrospective Cohort Study. Endocr Metab Immune Disord Drug Targets (2020) 20(4):584-90. Epub 2019/10/18. doi: 10.2174/1871530319666191016103222. PubMed PMID: 31622212.

270. Fenercioglu AK, Saler T, Genc E, Sabuncu H, Altuntas Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in Type 2 diabetes mellitus without complications. J Endocrinol Invest (2010) 33(2):118-24. Epub 2009/10/17. doi: 10.3275/6564

10.1007/BF03346565. PubMed PMID: 19834314.

271. Ferreira L, Teixeira-de-Lemos E, Pinto F, Parada B, Mega C, Vala H, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm (2010) 2010:592760. Epub 2010/07/24. doi: 10.1155/2010/592760. PubMed PMID: 20652060; PubMed Central PMCID: PMCPMC2905949.

272. Flaim C, Kob M, Di Pierro AM, Herrmann M, Lucchin L. Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: A pilot study. J Nutr Biochem (2017) 50:95-102. Epub 2017/10/21. doi: 10.1016/j.jnutbio.2017.05.003. PubMed PMID: 29053995.

273. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev (2011) 7(5):313-24. Epub 2011/08/16. doi: 10.2174/157339911797415585. PubMed PMID: 21838680.

274. Forsberg E, Xu C, Grunler J, Frostegard J, Tekle M, Brismar K, et al. Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J Diabetes Complications (2015) 29(8):1152-8. Epub 2015/09/24. doi: 10.1016/j.jdiacomp.2015.08.006. PubMed PMID: 26395643.

275. Forstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res (2017) 120(4):713-35. Epub 2017/02/18. doi: 10.1161/CIRCRESAHA.116.309326. PubMed PMID: 28209797.

276. Fujii H, Kono K, Nakai K, Goto S, Komaba H, Hamada Y, et al. Oxidative and nitrosative stress and progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol (2010) 31(4):342-52. Epub 2010/03/13. doi: 10.1159/000297290. PubMed PMID: 20224273.

277. Gajos-Draus A, Duda M, Beresewicz A. Cardiac and renal upregulation of Nox2 and NF-kappaB and repression of Nox4 and Nrf2 in season- and diabetes-mediated models of vascular oxidative stress in guinea-pig and rat. Physiol Rep (2017) 5(20). Epub 2017/11/01. doi: 10.14814/phy2.13474. PubMed PMID: 29084841; PubMed Central PMCID: PMCPMC5661235.

278. Gao S, Roberts HK, Wang X. Cross tissue trait-pathway network reveals the importance of oxidative stress and inflammation pathways in obesity-induced diabetes in mouse. PLoS One (2012) 7(9):e44544. Epub 2012/10/03. doi: 10.1371/journal.pone.0044544. PubMed PMID: 23028558; PubMed Central PMCID: PMCPMC3444455.

279. Gao W, Li X, Gao Z, Li H. Iron increases diabetes-induced kidney injury and oxidative stress in rats. Biol Trace Elem Res (2014) 160(3):368-75. Epub 2014/07/06. doi: 10.1007/s12011-014-0021-9. PubMed PMID: 24996958.

280. Afolayan AJ, Eis A, Alexander M, Michalkiewicz T, Teng RJ, Lakshminrusimha S, et al. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol (2016) 310(1):L40-9. Epub 2015/11/01. doi: 10.1152/ajplung.00392.2014. PubMed PMID: 26519208; PubMed Central PMCID: PMCPMC4698434.

281. Afolayan AJ, Eis A, Teng RJ, Bakhutashvili I, Kaul S, Davis JM, et al. Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol (2012) 303(10):L870-9. Epub 2012/09/11. doi: 10.1152/ajplung.00098.2012. PubMed PMID: 22962015; PubMed Central PMCID: PMCPMC3517675.

282. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res (2017) 51(4):428-38. Epub 2017/04/22. doi: 10.1080/10715762.2017.1322205. PubMed PMID: 28427291.

283. Altiparmak IH, Erkus ME, Gunebakmaz O. Oxidative stress is associated with not only coronary artery disease on statin therapy but also diabetes mellitus and hypertension. Indian Heart J (2016) 68(2):194-5. Epub 2016/05/03. doi: 10.1016/j.ihj.2015.11.027. PubMed PMID: 27133335; PubMed Central PMCID: PMCPMC4867015.

284. Anand-Srivastava MB. Modulation of Gi Proteins in Hypertension: Role of Angiotensin II and Oxidative Stress. Curr Cardiol Rev (2010) 6(4):298-308. Epub 2011/11/02. doi: 10.2174/157340310793566046. PubMed PMID: 22043206; PubMed Central PMCID: PMCPMC3083811.

285. Argacha JF, Egrise D, Pochet S, Fontaine D, Lefort A, Libert F, et al. Vitamin D deficiency-induced hypertension is associated with vascular oxidative stress and altered heart gene expression. J Cardiovasc Pharmacol (2011) 58(1):65-71. Epub 2011/04/19. doi: 10.1097/FJC.0b013e31821c832f. PubMed PMID: 21499117.

286. Asemi Z, Samimi M, Tabassi Z, Sabihi SS, Esmaillzadeh A. A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition (2013) 29(4):619-24. Epub 2013/03/08. doi: 10.1016/j.nut.2012.11.020. PubMed PMID: 23466048.

287. Ashraf MZ. Hypertension at high altitude: the interplay between genetic and biochemical factors in the setting of oxidative stress. Hypertens Res (2016) 39(4):199-200. Epub 2015/12/15. doi: 10.1038/hr.2015.140. PubMed PMID: 26657006.

288. Asmathulla S, Koner BC, Papa D. Does oxidative stress play a role in altered plasma protein homeostasis in pregnancy-induced hypertension? Acta Physiol Hung (2011) 98(3):339-46. Epub 2011/09/07. doi: 10.1556/APhysiol.98.2011.3.11. PubMed PMID: 21893473.

289. Avendano MS, Garcia-Redondo AB, Zalba G, Gonzalez-Amor M, Aguado A, Martinez-Revelles S, et al. mPGES-1 (Microsomal Prostaglandin E Synthase-1) Mediates Vascular Dysfunction in Hypertension Through Oxidative Stress. Hypertension (2018) 72(2):492-502. Epub 2018/06/13. doi: 10.1161/HYPERTENSIONAHA.118.10833. PubMed PMID: 29891646.

290. Bai J, Yu XJ, Liu KL, Wang FF, Li HB, Shi XL, et al. Tert-butylhydroquinone attenuates oxidative stress and inflammation in hypothalamic paraventricular nucleus in high salt-induced hypertension. Toxicol Lett (2017) 281:1-9. Epub 2017/08/29. doi: 10.1016/j.toxlet.2017.08.018. PubMed PMID: 28844481.

291. Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci (2014) 19(4):358-67. Epub 2014/08/07. PubMed PMID: 25097610; PubMed Central PMCID: PMCPMC4115353.

292. Barhoumi T, Briet M, Kasal DA, Fraulob-Aquino JC, Idris-Khodja N, Laurant P, et al. Erythropoietin-induced hypertension and vascular injury in mice overexpressing human endothelin-1: exercise attenuated hypertension, oxidative stress, inflammation and immune response. J Hypertens (2014) 32(4):784-94. Epub 2014/01/28. doi: 10.1097/HJH.0000000000000101. PubMed PMID: 24463938.

293. Barp J, Sartorio CL, Campos C, Llesuy SF, Araujo AS, Bello-Klein A. Influence of ovariectomy on cardiac oxidative stress in a renovascular hypertension model. Can J Physiol Pharmacol (2012) 90(9):1229-34. Epub 2012/08/21. doi: 10.1139/y2012-078. PubMed PMID: 22900708.

294. Barrows IR, Ramezani A, Raj DS. Inflammation, Immunity, and Oxidative Stress in Hypertension-Partners in Crime? Adv Chronic Kidney Dis (2019) 26(2):122-30. Epub 2019/04/27. doi: 10.1053/j.ackd.2019.03.001. PubMed PMID: 31023446; PubMed Central PMCID: PMCPMC6816256.

295. Bastard JP, Couffignal C, Fellahi S, Bard JM, Mentre F, Salmon D, et al. Diabetes and dyslipidaemia are associated with oxidative stress independently of inflammation in long-term antiretroviral-treated HIV-infected patients. Diabetes Metab (2019) 45(6):573-81. Epub 2019/03/14. doi: 10.1016/j.diabet.2019.02.008. PubMed PMID: 30862472.

296. Bauer AJ, Banek CT, Needham K, Gillham H, Capoccia S, Regal JF, et al. Pravastatin attenuates hypertension, oxidative stress, and angiogenic imbalance in rat model of placental ischemia-induced hypertension. Hypertension (2013) 61(5):1103-10. Epub 2013/03/06. doi: 10.1161/HYPERTENSIONAHA.111.00226. PubMed PMID: 23460290; PubMed Central PMCID: PMCPMC3909776.

297. Becker CU, Sartorio CL, Campos-Carraro C, Siqueira R, Colombo R, Zimmer A, et al. Exercise training decreases oxidative stress in skeletal muscle of rats with pulmonary arterial hypertension. Arch Physiol Biochem (2020):1-9. Epub 2020/05/26. doi: 10.1080/13813455.2020.1769679. PubMed PMID: 32449880.

298. Bharathi V, Rengarajan RL, Radhakrishnan R, Hashem A, Abd Allah EF, Alqarawi AA, et al. Effects of a medicinal plant Macrotyloma uniflorum (Lam.) Verdc.formulation (MUF) on obesity-associated oxidative stress-induced liver injury. Saudi J Biol Sci (2018) 25(6):1115-21. Epub 2018/09/04. doi: 10.1016/j.sjbs.2018.03.010. PubMed PMID: 30174510; PubMed Central PMCID: PMCPMC6117251.

299. Bhat PV, Sonkusare S, Vinod V, Alluri NP, Kamath A. Corrigendum to “Maternal serum lipid levels, oxidative stress and antioxidant activity in pre-eclampsia patients from Southwest India” [Pregnancy Hypertension 15C (2019) 130-133]. Pregnancy Hypertens (2020) 21:179. Epub 2020/06/23. doi: 10.1016/j.preghy.2020.06.004. PubMed PMID: 32570151.

300. Bhatia J, Tabassum F, Sharma AK, Bharti S, Golechha M, Joshi S, et al. Emblica officinalis exerts antihypertensive effect in a rat model of DOCA-salt-induced hypertension: role of (p) eNOS, NO and oxidative stress. Cardiovasc Toxicol (2011) 11(3):272-9. Epub 2011/07/13. doi: 10.1007/s12012-011-9122-2. PubMed PMID: 21748534.

301. Bhatia K, Elmarakby AA, El-Remessy AB, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol (2012) 302(2):R274-82. Epub 2011/11/04. doi: 10.1152/ajpregu.00546.2011. PubMed PMID: 22049231; PubMed Central PMCID: PMCPMC3349386.

302. Blascke de Mello MM, Parente JM, Schulz R, Castro MM. Matrix metalloproteinase (MMP)-2 activation by oxidative stress decreases aortic calponin-1 levels during hypertrophic remodeling in early hypertension. Vascul Pharmacol (2019) 116:36-44. Epub 2018/10/20. doi: 10.1016/j.vph.2018.10.002. PubMed PMID: 30339939.

303. Boin F, Erre GL, Posadino AM, Cossu A, Giordo R, Spinetti G, et al. Oxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension. Orphanet J Rare Dis (2014) 9:123. Epub 2014/08/03. doi: 10.1186/s13023-014-0123-7. PubMed PMID: 25085432; PubMed Central PMCID: PMCPMC4237898.

304. Braga VA. Reducing oxidative stress in the rostral ventrolateral medulla in renovascular hypertension by peripheral administration of losartan: how and where? Am J Hypertens (2013) 26(9):1170. Epub 2013/06/12. doi: 10.1093/ajh/hpt093. PubMed PMID: 23747953.

305. Briones AM, Touyz RM. Oxidative stress and hypertension: current concepts. Curr Hypertens Rep (2010) 12(2):135-42. Epub 2010/04/29. doi: 10.1007/s11906-010-0100-z. PubMed PMID: 20424957.

306. Caimi G, Mule G, Hopps E, Carollo C, Lo Presti R. Nitric oxide metabolites and oxidative stress in mild essential hypertension. Clin Hemorheol Microcirc (2010) 46(4):321-5. Epub 2010/12/29. doi: 10.3233/CH-2010-1360. PubMed PMID: 21187581.

307. Calo LA, Ravarotto V, Simioni F, Naso E, Marchini F, Bonfante L, et al. Pathophysiology of Post Transplant Hypertension in Kidney Transplant: Focus on Calcineurin Inhibitors Induced Oxidative Stress and Renal Sodium Retention and Implications with RhoA/Rho Kinase Pathway. Kidney Blood Press Res (2017) 42(4):676-85. Epub 2017/11/14. doi: 10.1159/000483023. PubMed PMID: 29131070.

308. Campese VM. Oxidative stress and sympathetic activity in hypertension. Am J Hypertens (2010) 23(5):456. Epub 2010/04/21. doi: 10.1038/ajh.2010.19. PubMed PMID: 20404802.

309. Campos LB, Gilglioni EH, Garcia RF, Brito Mdo N, Natali MR, Ishii-Iwamoto EL, et al. Cimicifuga racemosa impairs fatty acid beta-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension. Free Radic Biol Med (2012) 53(4):680-9. Epub 2012/06/12. doi: 10.1016/j.freeradbiomed.2012.05.043. PubMed PMID: 22684021.

310. Campos RR. Chronic oxidative stress and sympathetic vasomotor tone in arterial hypertension. Am J Hypertens (2010) 23(8):820. Epub 2010/07/21. doi: 10.1038/ajh.2010.117. PubMed PMID: 20644532.

311. Campos RR. Response to “Reducing oxidative stress in the rostral ventrolateral medulla in renovascular hypertension by peripheral administration of losartan: how and where?”. Am J Hypertens (2013) 26(9):1171. Epub 2013/07/05. doi: 10.1093/ajh/hpt113. PubMed PMID: 23824761.

312. Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT. The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol (2011) 38(2):144-52. Epub 2010/08/04. doi: 10.1111/j.1440-1681.2010.05437.x. PubMed PMID: 20678153.

313. Canale D, de Braganca AC, Goncalves JG, Shimizu MH, Sanches TR, Andrade L, et al. Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: role of oxidative stress and renin-angiotensin system. PLoS One (2014) 9(7):e103055. Epub 2014/07/23. doi: 10.1371/journal.pone.0103055. PubMed PMID: 25048368; PubMed Central PMCID: PMCPMC4105615.

314. Cardoso AM, Martins CC, Fiorin Fda S, Schmatz R, Abdalla FH, Gutierres J, et al. Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell Biochem Funct (2013) 31(2):136-51. Epub 2012/09/11. doi: 10.1002/cbf.2868. PubMed PMID: 22961602.

315. Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res (2011) 89(3):574-85. Epub 2010/11/26. doi: 10.1093/cvr/cvq366. PubMed PMID: 21097806.

316. Carreton E, Ceron JJ, Martinez-Subiela S, Tvarijonaviciute A, Caro-Vadillo A, Montoya-Alonso JA. Acute phase proteins and markers of oxidative stress to assess the severity of the pulmonary hypertension in heartworm-infected dogs. Parasit Vectors (2017) 10(Suppl 2):477. Epub 2017/11/17. doi: 10.1186/s13071-017-2426-8. PubMed PMID: 29143686; PubMed Central PMCID: PMCPMC5688428.

317. Carvalho-Galvao A, Guimaraes DD, De Brito Alves JL, Braga VA. Central Inhibition of Tumor Necrosis Factor Alpha Reduces Hypertension by Attenuating Oxidative Stress in the Rostral Ventrolateral Medulla in Renovascular Hypertensive Rats. Front Physiol (2019) 10:491. Epub 2019/05/23. doi: 10.3389/fphys.2019.00491. PubMed PMID: 31114507; PubMed Central PMCID: PMCPMC6502978.

318. Castro MM, Rizzi E, Ceron CS, Guimaraes DA, Rodrigues GJ, Bendhack LM, et al. Doxycycline ameliorates 2K-1C hypertension-induced vascular dysfunction in rats by attenuating oxidative stress and improving nitric oxide bioavailability. Nitric Oxide (2012) 26(3):162-8. Epub 2012/02/14. doi: 10.1016/j.niox.2012.01.009. PubMed PMID: 22327038.

319. Ceron CS, Marchi KC, Muniz JJ, Tirapelli CR. Vascular oxidative stress: a key factor in the development of hypertension associated with ethanol consumption. Curr Hypertens Rev (2014) 10(4):213-22. Epub 2014/01/01. doi: 10.2174/157340211004150319122736. PubMed PMID: 25801625.

320. Chaudhary P, Pandey A, Azad CS, Tia N, Singh M, Gambhir IS. Association of oxidative stress and endothelial dysfunction in hypertension. Anal Biochem (2020) 590:113535. Epub 2019/12/11. doi: 10.1016/j.ab.2019.113535. PubMed PMID: 31821803.

321. Chaykovska L, Alter ML, von Websky K, Hohmann M, Tsuprykov O, Reichetzeder C, et al. Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension. J Hypertens (2013) 31(11):2290-8; discussion 9. Epub 2013/10/01. doi: 10.1097/HJH.0b013e3283649b4d. PubMed PMID: 24077249.

322. Chen D, Zang YH, Qiu Y, Zhang F, Chen AD, Wang JJ, et al. BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. Oxid Med Cell Longev (2019) 2019:5018410. Epub 2019/02/26. doi: 10.1155/2019/5018410. PubMed PMID: 30805081; PubMed Central PMCID: PMCPMC6362478.

323. Chen HE, Lin YJ, Lin IC, Yu HR, Sheen JM, Tsai CC, et al. Resveratrol prevents combined prenatal N(G)-nitro-L-arginine-methyl ester (L-NAME) treatment plus postnatal high-fat diet induced programmed hypertension in adult rat offspring: interplay between nutrient-sensing signals, oxidative stress and gut microbiota. J Nutr Biochem (2019) 70:28-37. Epub 2019/05/21. doi: 10.1016/j.jnutbio.2019.04.002. PubMed PMID: 31108332.

324. Cheng YC, Sheen JM, Hu WL, Hung YC. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid Med Cell Longev (2017) 2017:8526438. Epub 2018/01/11. doi: 10.1155/2017/8526438. PubMed PMID: 29317985; PubMed Central PMCID: PMCPMC5727797.

325. Cheserek MJ, Wu G, Li L, Li L, Karangwa E, Shi Y, et al. Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity. J Nutr Biochem (2016) 33:36-44. Epub 2016/06/05. doi: 10.1016/j.jnutbio.2016.02.008. PubMed PMID: 27260466.

326. Chester M, Seedorf G, Tourneux P, Gien J, Tseng N, Grover T, et al. Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol (2011) 301(5):L755-64. Epub 2011/08/23. doi: 10.1152/ajplung.00138.2010. PubMed PMID: 21856817; PubMed Central PMCID: PMCPMC3213988.

327. Chida R, Hisauchi I, Toyoda S, Kikuchi M, Komatsu T, Hori Y, et al. Impact of irbesartan, an angiotensin receptor blocker, on uric acid level and oxidative stress in high-risk hypertension patients. Hypertens Res (2015) 38(11):765-9. Epub 2015/07/17. doi: 10.1038/hr.2015.82. PubMed PMID: 26178150.

328. Chobanyan-Jurgens K, Pham VV, Stichtenoth DO, Tsikas D. Asymmetrical dimethylarginine, oxidative stress, and atherosclerosis. Hypertension (2011) 58(5):e184-5; author reply e6. Epub 2011/10/05. doi: 10.1161/HYPERTENSIONAHA.111.180984. PubMed PMID: 21968759.

329. Ciocoiu M, Badescu L, Miron A, Badescu M. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension. Evid Based Complement Alternat Med (2013) 2013:912769. Epub 2013/03/28. doi: 10.1155/2013/912769. PubMed PMID: 23533529; PubMed Central PMCID: PMCPMC3600185.

330. Coats A, Jain S. Protective effects of nebivolol from oxidative stress to prevent hypertension-related target organ damage. J Hum Hypertens (2017) 31(6):376-81. Epub 2017/03/03. doi: 10.1038/jhh.2017.8. PubMed PMID: 28252041; PubMed Central PMCID: PMCPMC5418557.

331. Coral-Vazquez RM, Romero Arauz JF, Canizales-Quinteros S, Coronel A, Valencia Villalvazo EY, Hernandez Rivera J, et al. Analysis of polymorphisms and haplotypes in genes associated with vascular tone, hypertension and oxidative stress in Mexican-Mestizo women with severe preeclampsia. Clin Biochem (2013) 46(7-8):627-32. Epub 2013/01/22. doi: 10.1016/j.clinbiochem.2012.12.016. PubMed PMID: 23333443.

332. Cornelius DC, Hogg JP, Scott J, Wallace K, Herse F, Moseley J, et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension (2013) 62(6):1068-73. Epub 2013/09/26. doi: 10.1161/HYPERTENSIONAHA.113.01514. PubMed PMID: 24060899; PubMed Central PMCID: PMCPMC3899693.

333. Cristobal-Garcia M, Garcia-Arroyo FE, Tapia E, Osorio H, Arellano-Buendia AS, Madero M, et al. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid Med Cell Longev (2015) 2015:535686. Epub 2015/04/29. doi: 10.1155/2015/535686. PubMed PMID: 25918583; PubMed Central PMCID: PMCPMC4396880.

334. Crosswhite P, Sun Z. Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens (2010) 28(2):201-12. Epub 2010/01/07. doi: 10.1097/HJH.0b013e328332bcdb. PubMed PMID: 20051913; PubMed Central PMCID: PMCPMC2809140.

335. Crowley SD. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid Redox Signal (2014) 20(1):102-20. Epub 2013/03/12. doi: 10.1089/ars.2013.5258. PubMed PMID: 23472597; PubMed Central PMCID: PMCPMC3880899.

336. Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci (2013) 14(9):17553-72. Epub 2013/08/30. doi: 10.3390/ijms140917553. PubMed PMID: 23985827; PubMed Central PMCID: PMCPMC3794741.

337. Cuevas S, Yang Y, Konkalmatt P, Asico LD, Feranil J, Jones J, et al. Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1. Hypertension (2015) 65(6):1251-7. Epub 2015/04/22. doi: 10.1161/HYPERTENSIONAHA.114.04525. PubMed PMID: 25895590; PubMed Central PMCID: PMCPMC4433423.

338. Cunningham MW, Jayaram A, Deer E, Amaral LM, Vaka VR, Ibrahim T, et al. Tumor necrosis factor alpha (TNF-alpha) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertens Pregnancy (2020):1-6. Epub 2020/07/11. doi: 10.1080/10641955.2020.1793999. PubMed PMID: 32646252.

339. da Costa GF, Ognibene DT, da Costa CA, Teixeira MT, Cordeiro V, de Bem GF, et al. Vitis vinifera L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Prev Nutr Food Sci (2020) 25(1):25-31. Epub 2020/04/16. doi: 10.3746/pnf.2020.25.1.25. PubMed PMID: 32292752; PubMed Central PMCID: PMCPMC7143014.

340. da Cunha NV, Pinge-Filho P, Panis C, Silva BR, Pernomian L, Grando MD, et al. Decreased endothelial nitric oxide, systemic oxidative stress, and increased sympathetic modulation contribute to hypertension in obese rats. Am J Physiol Heart Circ Physiol (2014) 306(10):H1472-80. Epub 2014/03/19. doi: 10.1152/ajpheart.00520.2013. PubMed PMID: 24633548.

341. De Miguel C, Guo C, Lund H, Feng D, Mattson DL. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am J Physiol Renal Physiol (2011) 300(3):F734-42. Epub 2010/12/17. doi: 10.1152/ajprenal.00454.2010. PubMed PMID: 21159736; PubMed Central PMCID: PMCPMC3064138.

342. de Queiroz TM, Xia H, Filipeanu CM, Braga VA, Lazartigues E. alpha-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. Am J Physiol Heart Circ Physiol (2015) 309(5):H926-34. Epub 2015/08/09. doi: 10.1152/ajpheart.00259.2015. PubMed PMID: 26254330; PubMed Central PMCID: PMCPMC4591409.

343. Dekleva M, Lazic JS, Pavlovic-Kleut M, Mazic S, Stevanovic A, Soldatovic I, et al. Cardiopulmonary exercise testing and its relation to oxidative stress in patients with hypertension. Hypertens Res (2012) 35(12):1145-51. Epub 2012/08/10. doi: 10.1038/hr.2012.115. PubMed PMID: 22875068.

344. Demarco VG, Whaley-Connell AT, Sowers JR, Habibi J, Dellsperger KC. Contribution of oxidative stress to pulmonary arterial hypertension. World J Cardiol (2010) 2(10):316-24. Epub 2010/12/17. doi: 10.4330/wjc.v2.i10.316. PubMed PMID: 21160609; PubMed Central PMCID: PMCPMC2999041.

345. Demirci S, Sekeroglu MR, Noyan T, Koceroglu R, Soyoral YU, Dulger H, et al. The importance of oxidative stress in patients with chronic renal failure whose hypertension is treated with peritoneal dialysis. Cell Biochem Funct (2011) 29(3):249-54. Epub 2011/04/06. doi: 10.1002/cbf.1744. PubMed PMID: 21465497.

346. Dhaun N, Kluth DC. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension (2012) 59(5):e47; author reply e8. Epub 2012/04/12. doi: 10.1161/HYPERTENSIONAHA.112.193276. PubMed PMID: 22493077.

347. Dias AT, Rodrigues BP, Porto ML, Gava AL, Balarini CM, Freitas FP, et al. Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension. J Transl Med (2014) 12:35. Epub 2014/02/08. doi: 10.1186/1479-5876-12-35. PubMed PMID: 24502628; PubMed Central PMCID: PMCPMC3922021.

348. Dias JP, Talbot S, Senecal J, Carayon P, Couture R. Kinin B1 receptor enhances the oxidative stress in a rat model of insulin resistance: outcome in hypertension, allodynia and metabolic complications. PLoS One (2010) 5(9):e12622. Epub 2010/09/11. doi: 10.1371/journal.pone.0012622. PubMed PMID: 20830306; PubMed Central PMCID: PMCPMC2935380.

349. Dikalov S, Itani H, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, et al. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. Am J Physiol Heart Circ Physiol (2019) 316(3):H639-H46. Epub 2019/01/05. doi: 10.1152/ajpheart.00595.2018. PubMed PMID: 30608177; PubMed Central PMCID: PMCPMC6459311.

350. Dikalov SI, Dikalova AE. Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxid Redox Signal (2019) 31(10):710-21. Epub 2019/01/09. doi: 10.1089/ars.2018.7632. PubMed PMID: 30618267; PubMed Central PMCID: PMCPMC6708267.

351. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal (2014) 20(2):281-94. Epub 2013/09/24. doi: 10.1089/ars.2012.4918. PubMed PMID: 24053613; PubMed Central PMCID: PMCPMC3887459.

352. Dikalov SI, Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol Heart Circ Physiol (2013) 305(10):H1417-27. Epub 2013/09/18. doi: 10.1152/ajpheart.00089.2013. PubMed PMID: 24043248; PubMed Central PMCID: PMCPMC3840266.

353. Dikalova A, Dikalov S. Response by Dikalova and Dikalov to Letter Regarding Article, “Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress”. Circ Res (2020) 126(7):e33-e4. Epub 2020/03/28. doi: 10.1161/CIRCRESAHA.120.316763. PubMed PMID: 32213139; PubMed Central PMCID: PMCPMC7134832.

354. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, et al. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ Res (2017) 121(5):564-74. Epub 2017/07/08. doi: 10.1161/CIRCRESAHA.117.310933. PubMed PMID: 28684630; PubMed Central PMCID: PMCPMC5562527.

355. do Vale GT, Simplicio JA, Gonzaga NA, Yokota R, Ribeiro AA, Casarini DE, et al. Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol. Atherosclerosis (2018) 274:67-76. Epub 2018/05/13. doi: 10.1016/j.atherosclerosis.2018.04.041. PubMed PMID: 29753230.

356. Dorfmuller P, Chaumais MC, Giannakouli M, Durand-Gasselin I, Raymond N, Fadel E, et al. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respir Res (2011) 12:119. Epub 2011/09/13. doi: 10.1186/1465-9921-12-119. PubMed PMID: 21906276; PubMed Central PMCID: PMCPMC3189121.

357. Dornas WC, Cardoso LM, Silva M, Machado NL, Chianca DA, Jr., Alzamora AC, et al. Oxidative stress causes hypertension and activation of nuclear factor-kappaB after high-fructose and salt treatments. Sci Rep (2017) 7:46051. Epub 2017/04/12. doi: 10.1038/srep46051. PubMed PMID: 28397867; PubMed Central PMCID: PMCPMC5387393.

358. Dorofeyeva NA, Kotsuruba AV, Mogilnitskaya LA, Malyna AE, Kornelyuk AI, Sagach VF. [Endothelial Monocyteactivating Factor Ii Cancels Oxidative Stress, Constitutive Nos Uncoupling and Induced Violations of Cardiac Hemodynamics in Hypertension (Part Ii)]. Fiziol Zh (2015) 61(3):11-8. Epub 2015/10/27. doi: 10.15407/fz61.03.011. PubMed PMID: 26495731.

359. Draganovic D, Lucic N, Jojic D. Oxidative Stress Marker and Pregnancy Induced Hypertension. Med Arch (2016) 70(6):437-40. Epub 2017/02/18. doi: 10.5455/medarh.2016.70.437-440. PubMed PMID: 28210016; PubMed Central PMCID: PMCPMC5292228.

360. Draganovic D, Lucic N, Jojic D, Milicevic S. Correlation of Oxidative Stress Markers with Ultrasound and Cardiotocography Parameters with Hypertension Induced Pregnancy. Acta Inform Med (2017) 25(1):19-23. Epub 2017/05/10. doi: 10.5455/aim.2017.25.19-23. PubMed PMID: 28484292; PubMed Central PMCID: PMCPMC5402358.

361. Duarte DA, Silva KC, Rosales MA, Lopes de Faria JB, Lopes de Faria JM. The concomitance of hypertension and diabetes exacerbating retinopathy: the role of inflammation and oxidative stress. Curr Clin Pharmacol (2013) 8(4):266-77. Epub 2012/11/24. doi: 10.2174/1574884711308040002. PubMed PMID: 23173956.

362. Ebrahimian T, Li MW, Lemarie CA, Simeone SM, Pagano PJ, Gaestel M, et al. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension (2011) 57(2):245-54. Epub 2010/12/22. doi: 10.1161/HYPERTENSIONAHA.110.159889. PubMed PMID: 21173344; PubMed Central PMCID: PMCPMC4521212.

363. Elks CM, Reed SD, Mariappan N, Shukitt-Hale B, Joseph JA, Ingram DK, et al. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress. PLoS One (2011) 6(9):e24028. Epub 2011/09/29. doi: 10.1371/journal.pone.0024028. PubMed PMID: 21949690; PubMed Central PMCID: PMCPMC3174132.

364. Erlandsson L, Ducat A, Castille J, Zia I, Kalapotharakos G, Hedstrom E, et al. Alpha-1 microglobulin as a potential therapeutic candidate for treatment of hypertension and oxidative stress in the STOX1 preeclampsia mouse model. Sci Rep (2019) 9(1):8561. Epub 2019/06/14. doi: 10.1038/s41598-019-44639-9. PubMed PMID: 31189914; PubMed Central PMCID: PMCPMC6561956.

365. Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, et al. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res (2013) 99(3):395-403. Epub 2013/05/08. doi: 10.1093/cvr/cvt109. PubMed PMID: 23650288.

366. Fanelli C, Zatz R. Linking oxidative stress, the renin-angiotensin system, and hypertension. Hypertension (2011) 57(3):373-4. Epub 2011/02/02. doi: 10.1161/HYPERTENSIONAHA.110.167775. PubMed PMID: 21282556.

367. Feng D, Yang C, Geurts AM, Kurth T, Liang M, Lazar J, et al. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab (2012) 15(2):201-8. Epub 2012/02/14. doi: 10.1016/j.cmet.2012.01.003. PubMed PMID: 22326221; PubMed Central PMCID: PMCPMC3280886.

368. Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des (2013) 19(32):5695-703. Epub 2013/03/02. doi: 10.2174/1381612811319320005. PubMed PMID: 23448484.

369. Foresto-Neto O, Avila VF, Arias SCA, Zambom FFF, Rempel LCT, Faustino VD, et al. NLRP3 inflammasome inhibition ameliorates tubulointerstitial injury in the remnant kidney model. Lab Invest (2018) 98(6):773-82. Epub 2018/03/08. doi: 10.1038/s41374-018-0029-4. PubMed PMID: 29511302.

370. Franco JG, Lisboa PC, Lima NS, Amaral TA, Peixoto-Silva N, Resende AC, et al. Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J Nutr Biochem (2013) 24(6):960-6. Epub 2012/09/11. doi: 10.1016/j.jnutbio.2012.06.019. PubMed PMID: 22959054.

371. Gabrielli LA, Castro PF, Godoy I, Mellado R, Bourge RC, Alcaino H, et al. Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. J Card Fail (2011) 17(12):1012-7. Epub 2011/11/30. doi: 10.1016/j.cardfail.2011.08.008. PubMed PMID: 22123364.

372. Gao HL, Yu XJ, Liu KL, Shi XL, Qi J, Chen YM, et al. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress. Sci Rep (2017) 7:43038. Epub 2017/02/23. doi: 10.1038/srep43038. PubMed PMID: 28225041; PubMed Central PMCID: PMCPMC5320530.

373. Gao J, Xie Q, Wei T, Huang C, Zhou W, Shen W. Nebivolol Improves Obesity-Induced Vascular Remodeling by Suppressing NLRP3 Activation. J Cardiovasc Pharmacol (2019) 73(5):326-33. Epub 2019/05/15. doi: 10.1097/FJC.0000000000000667. PubMed PMID: 31082961.

374. Gao Z, Han Y, Hu Y, Wu X, Wang Y, Zhang X, et al. Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways. PLoS One (2016) 11(2):e0149032. Epub 2016/02/13. doi: 10.1371/journal.pone.0149032. PubMed PMID: 26866373; PubMed Central PMCID: PMCPMC4750900.

375. Garcia VP, Rocha HNM, Silva GM, Amaral TAG, Secher NH, Nobrega ACL, et al. Exogenous l-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension. Life Sci (2016) 157:125-30. Epub 2016/06/12. doi: 10.1016/j.lfs.2016.06.006. PubMed PMID: 27287681.

376. Ghulmiyyah LM, Costantine MM, Yin H, Tamayo E, Clark SM, Hankins GD, et al. The role of oxidative stress in the developmental origin of adult hypertension. Am J Obstet Gynecol (2011) 205(2):155 e7-11. Epub 2011/05/03. doi: 10.1016/j.ajog.2011.03.015. PubMed PMID: 21531372; PubMed Central PMCID: PMCPMC3202020.

377. Gitto E, Pellegrino S, Aversa S, Romeo C, Trimarchi G, Barberi I, et al. Oxidative stress and persistent pulmonary hypertension of the newborn treated with inhaled nitric oxide and different oxygen concentrations. J Matern Fetal Neonatal Med (2012) 25(9):1723-6. Epub 2012/02/11. doi: 10.3109/14767058.2012.663020. PubMed PMID: 22320379.

378. Gocmen AY, Celikbilek A, Hacioglu G, Tanik N, Agar A, Yargicoglu P, et al. The relationship between oxidative stress markers and visual evoked potentials in different hypertension models. Anadolu Kardiyol Derg (2014) 14(6):498-504. Epub 2014/09/19. doi: 10.5152/akd.2014.4923. PubMed PMID: 25233495.

379. Gomes P, Simao S, Lemos V, Amaral JS, Soares-da-Silva P. Loss of oxidative stress tolerance in hypertension is linked to reduced catalase activity and increased c-Jun NH2-terminal kinase activation. Free Radic Biol Med (2013) 56:112-22. Epub 2012/12/12. doi: 10.1016/j.freeradbiomed.2012.11.017. PubMed PMID: 23220262.

380. Gomez-Guzman M, Jimenez R, Sanchez M, Zarzuelo MJ, Galindo P, Quintela AM, et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med (2012) 52(1):70-9. Epub 2011/10/18. doi: 10.1016/j.freeradbiomed.2011.09.015. PubMed PMID: 22001745.

381. Gomez-Marcos MA, Gonzalez-Sarmiento R, Recio-Rodriguez JI, Agudo-Conde C, Gamella-Pozuelo L, Perretta-Tejedor N, et al. Relationship between target organ damage and blood pressure, retinal vessel calibre, oxidative stress and polymorphisms in VAV-2 and VAV-3 genes in patients with hypertension: a case-control study protocol (LOD-Hipertension). BMJ Open (2014) 4(4):e005112. Epub 2014/04/05. doi: 10.1136/bmjopen-2014-005112. PubMed PMID: 24699462; PubMed Central PMCID: PMCPMC3987709.

382. Anand Swarup KR, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Rathore HA, et al. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacognosy Res (2010) 2(1):31-5. Epub 2010/01/01. doi: 10.4103/0974-8490.60582. PubMed PMID: 21808536; PubMed Central PMCID: PMCPMC3140125.

383. Ansari JA, Bhandari U, Haque SE, Pillai KK. Enhancement of antioxidant defense mechanism by pitavastatin and rosuvastatin on obesity-induced oxidative stress in Wistar rats. Toxicol Mech Methods (2012) 22(1):67-73. Epub 2011/08/24. doi: 10.3109/15376516.2011.603391. PubMed PMID: 21859367.

384. Aragon-Martinez OH, Martinez-Morales F, Isiordia-Espinoza MA, Luque Contreras D, Zapata Morales JR, Gonzalez-Rivera ML. Bacterial resistance and failure of clinical cure could be produced by oxidative stress in patients with diabetes or cardiovascular diseases during fluoroquinolone therapy. Med Hypotheses (2017) 103:32-4. Epub 2017/06/03. doi: 10.1016/j.mehy.2017.04.004. PubMed PMID: 28571804.

385. Araujo JA. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health (2010) 4(1):79-93. Epub 2010/01/01. doi: 10.1007/s11869-010-0101-8. PubMed PMID: 21461032; PubMed Central PMCID: PMCPMC3040314.

386. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci (2011) 63(1):1-9. Epub 2011/05/24. doi: 10.1016/j.jdermsci.2011.04.007. PubMed PMID: 21600738.

387. Aroor AR, DeMarco VG. Oxidative stress and obesity: the chicken or the egg? Diabetes (2014) 63(7):2216-8. Epub 2014/06/26. doi: 10.2337/db14-0424. PubMed PMID: 24962921.

388. Banks WA. A Spectrum of Topics for 2019: Advances in Neuroinflammation, Oxidative Stress, Obesity, Diabetes Mellitus, Cardiovascular Disease, Autism, Exosomes, and Central Nervous System Diseases. Curr Pharm Des (2020) 26(1):1-5. Epub 2020/03/04. doi: 10.2174/138161282601200225102049. PubMed PMID: 32122292.

389. Bryk D, Olejarz W, Zapolska-Downar D. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis. Postepy Hig Med Dosw (Online) (2017) 71(0):57-68. Epub 2017/02/10. doi: 10.5604/17322693.1229823. PubMed PMID: 28181912.

390. Cabezas KG, Gomez-Fernandez CR, Vazquez-Padron R. A Comprehensive Review of Oxidative Stress as the Underlying Mechanism in Atherosclerosis and the Inefficiency of Antioxidants to Revert this Process. Curr Pharm Des (2018) 24(40):4705-10. Epub 2019/01/18. doi: 10.2174/1381612825666190116103323. PubMed PMID: 30652635.

391. Cao R, Fang D, Wang J, Yu Y, Ye H, Kang P, et al. ALDH2 Overexpression Alleviates High Glucose-Induced Cardiotoxicity by Inhibiting NLRP3 Inflammasome Activation. J Diabetes Res (2019) 2019:4857921. Epub 2019/12/25. doi: 10.1155/2019/4857921. PubMed PMID: 31871948; PubMed Central PMCID: PMCPMC6906837.

392. Carmona-Maurici J, Amigo N, Cuello E, Bermudez M, Baena-Fustegueras JA, Peinado-Onsurbe J, et al. Bariatric surgery decreases oxidative stress and protein glycosylation in patients with morbid obesity. Eur J Clin Invest (2020):e13320. Epub 2020/06/15. doi: 10.1111/eci.13320. PubMed PMID: 32535887.

393. Carmona-Maurici J, Cuello E, Ricart-Jane D, Minarro A, Olsina Kissler JJ, Baena-Fustegueras JA, et al. Effect of bariatric surgery in the evolution of oxidative stress depending on the presence of atheroma in patients with morbid obesity. Surg Obes Relat Dis (2020). Epub 2020/06/27. doi: 10.1016/j.soard.2020.04.040. PubMed PMID: 32586725.

394. Chang JC, Kou SJ, Lin WT, Liu CS. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol (2010) 2(6):150-9. Epub 2010/12/17. doi: 10.4330/wjc.v2.i6.150. PubMed PMID: 21160733; PubMed Central PMCID: PMCPMC2999054.

395. Chen Y, Tang J, Zhang Y, Du J, Wang Y, Yu H, et al. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol (2020). Epub 2020/04/13. doi: 10.1007/s00210-020-01861-x. PubMed PMID: 32279084.

396. Cheng Y, Zhou M, Zhou W. MicroRNA-30e regulates TGF-beta-mediated NADPH oxidase 4-dependent oxidative stress by Snai1 in atherosclerosis. Int J Mol Med (2019) 43(4):1806-16. Epub 2019/03/01. doi: 10.3892/ijmm.2019.4102. PubMed PMID: 30816428; PubMed Central PMCID: PMCPMC6414159.

397. Cid M, Gonzalez M. Potential benefits of physical activity during pregnancy for the reduction of gestational diabetes prevalence and oxidative stress. Early Hum Dev (2016) 94:57-62. Epub 2016/02/03. doi: 10.1016/j.earlhumdev.2016.01.007. PubMed PMID: 26833143.

398. Clapes S, Fernandez T, Suarez G. Oxidative stress and birth defects in infants of women with pregestational diabetes. MEDICC Rev (2013) 15(1):37-40. Epub 2013/02/12. doi: 10.1590/s1555-79602013000100009. PubMed PMID: 23396241.

399. Codoner-Franch P, Valls-Belles V, Arilla-Codoner A, Alonso-Iglesias E. Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res (2011) 158(6):369-84. Epub 2011/11/09. doi: 10.1016/j.trsl.2011.08.004. PubMed PMID: 22061044.

400. Curti ML, Jacob P, Borges MC, Rogero MM, Ferreira SR. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes (2011) 2011:497401. Epub 2011/07/21. doi: 10.1155/2011/497401. PubMed PMID: 21773006; PubMed Central PMCID: PMCPMC3136190.

401. Czubkowski P, Wierzbicka A, Pawlowska J, Jankowska I, Socha P. Obesity, lipid profiles and oxidative stress in children after liver transplantation. Acta Biochim Pol (2017) 64(4):661-5. Epub 2017/12/10. doi: 10.18388/abp.2017_1623. PubMed PMID: 29222858.

402. De Marchi E, Baldassari F, Bononi A, Wieckowski MR, Pinton P. Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev (2013) 2013:564961. Epub 2013/04/23. doi: 10.1155/2013/564961. PubMed PMID: 23606925; PubMed Central PMCID: PMCPMC3625561.

403. Di Pietro M, Filardo S, Falasca F, Turriziani O, Sessa R. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. Int J Mol Sci (2017) 18(11). Epub 2017/11/22. doi: 10.3390/ijms18112459. PubMed PMID: 29156574; PubMed Central PMCID: PMCPMC5713425.

404. Duicu OM, Lighezan R, Sturza A, Ceausu RA, Borza C, Vaduva A, et al. Monoamine Oxidases as Potential Contributors to Oxidative Stress in Diabetes: Time for a Study in Patients Undergoing Heart Surgery. Biomed Res Int (2015) 2015:515437. Epub 2015/06/24. doi: 10.1155/2015/515437. PubMed PMID: 26101773; PubMed Central PMCID: PMCPMC4458524.

405. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS. Withaferin A Protects Against High-Fat Diet-Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance. Appl Biochem Biotechnol (2019) 188(1):241-59. Epub 2018/11/13. doi: 10.1007/s12010-018-2920-2. PubMed PMID: 30417321.

406. Alcala M, Sanchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, et al. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring) (2015) 23(8):1598-606. Epub 2015/07/07. doi: 10.1002/oby.21135. PubMed PMID: 26148343.

407. Alexandre EC, Calmasini FB, Sponton A, de Oliveira MG, Andre DM, Silva FH, et al. Influence of the periprostatic adipose tissue in obesity-associated mouse urethral dysfunction and oxidative stress: Effect of resveratrol treatment. Eur J Pharmacol (2018) 836:25-33. Epub 2018/08/14. doi: 10.1016/j.ejphar.2018.08.010. PubMed PMID: 30102890.

408. Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol (2014) 307(1):R26-34. Epub 2014/05/03. doi: 10.1152/ajpregu.00049.2014. PubMed PMID: 24789994; PubMed Central PMCID: PMCPMC4080277.

409. Alhashem F, Alkhateeb M, Sakr H, Alshahrani M, Alsunaidi M, Elrefaey H, et al. Exercise protects against obesity induced semen abnormalities via downregulating stem cell factor, upregulating Ghrelin and normalizing oxidative stress. EXCLI J (2014) 13:551-72. Epub 2014/01/01. PubMed PMID: 26417283; PubMed Central PMCID: PMCPMC4464503.

410. Amin MN, Siddiqui SA, Uddin MG, Ibrahim M, Uddin SMN, Adnan MT, et al. Increased Oxidative Stress, Altered Trace Elements, and Macro-Minerals Are Associated with Female Obesity. Biol Trace Elem Res (2020). Epub 2020/01/07. doi: 10.1007/s12011-019-02002-z. PubMed PMID: 31902098.

411. An H, Du X, Huang X, Qi L, Jia Q, Yin G, et al. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl Psychiatry (2018) 8(1):258. Epub 2018/12/01. doi: 10.1038/s41398-018-0303-7. PubMed PMID: 30498208; PubMed Central PMCID: PMCPMC6265271.

412. Ansari JA, Bhandari U, Pillai KK, Haque SE. Effect of rosuvastatin on obesity-induced cardiac oxidative stress in Wistar rats–a preliminary study. Indian J Exp Biol (2012) 50(3):216-22. Epub 2012/03/24. PubMed PMID: 22439437.

413. Araujo TG, Oliveira AG, Vecina JF, Marin RM, Franco ES, Abdalla Saad MJ, et al. Treatment with Parkinsonia aculeata combats insulin resistance-induced oxidative stress through the increase in PPARgamma/CuZn-SOD axis expression in diet-induced obesity mice. Mol Cell Biochem (2016) 419(1-2):93-101. Epub 2016/07/04. doi: 10.1007/s11010-016-2753-7. PubMed PMID: 27372351.

414. Astiz S, Gonzalez-Bulnes A, Astiz I, Barbero A, Pesantez-Pacheco JL, Garcia-Contreras C, et al. Metformin Alleviates Obesity and Systemic Oxidative Stress in Obese Young Swine. Pharmaceuticals (Basel) (2020) 13(7). Epub 2020/07/10. doi: 10.3390/ph13070142. PubMed PMID: 32640543.

415. Atabay VE, Lutfioglu M, Avci B, Sakallioglu EE, Aydogdu A. Obesity and oxidative stress in patients with different periodontal status: a case-control study. J Periodontal Res (2017) 52(1):51-60. Epub 2016/03/05. doi: 10.1111/jre.12368. PubMed PMID: 26932579.

416. Ates E, Set T, Karahan SC, Bicer C, Erel O. Thiol/Disulphide Homeostasis, Ischemia Modified Albumin, and Ferroxidase as Oxidative Stress Markers in Women with Obesity with Insulin Resistance. J Med Biochem (2019) 38(4):445-51. Epub 2019/09/10. doi: 10.2478/jomb-2019-0015. PubMed PMID: 31496908; PubMed Central PMCID: PMCPMC6708298.

417. Ballesteros-Guzman AK, Carrasco-Legleu CE, Levario-Carrillo M, Chavez-Corral DV, Sanchez-Ramirez B, Marinelarena-Carrillo EO, et al. Prepregnancy Obesity, Maternal Dietary Intake, and Oxidative Stress Biomarkers in the Fetomaternal Unit. Biomed Res Int (2019) 2019:5070453. Epub 2019/07/18. doi: 10.1155/2019/5070453. PubMed PMID: 31312657; PubMed Central PMCID: PMCPMC6595351.

418. Banse HE, Frank N, Kwong GP, McFarlane D. Relationship of oxidative stress in skeletal muscle with obesity and obesity-associated hyperinsulinemia in horses. Can J Vet Res (2015) 79(4):329-38. Epub 2015/10/02. PubMed PMID: 26424915; PubMed Central PMCID: PMCPMC4581679.

419. Bayliak MM, Abrat OB, Storey JM, Storey KB, Lushchak VI. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comp Biochem Physiol A Mol Integr Physiol (2019) 228:18-28. Epub 2018/11/06. doi: 10.1016/j.cbpa.2018.09.027. PubMed PMID: 30385171.

420. Bengesser SA, Lackner N, Birner A, Fellendorf FT, Platzer M, Mitteregger A, et al. Peripheral markers of oxidative stress and antioxidative defense in euthymia of bipolar disorder–Gender and obesity effects. J Affect Disord (2015) 172:367-74. Epub 2014/12/03. doi: 10.1016/j.jad.2014.10.014. PubMed PMID: 25451439.

421. Berkemeyer S. The straight line hypothesis elaborated: case reference obesity, an argument for acidosis, oxidative stress, and disease conglomeration? Med Hypotheses (2010) 75(1):59-64. Epub 2010/02/26. doi: 10.1016/j.mehy.2009.12.034. PubMed PMID: 20181434.

422. Billings FTt, Pretorius M, Schildcrout JS, Mercaldo ND, Byrne JG, Ikizler TA, et al. Obesity and oxidative stress predict AKI after cardiac surgery. J Am Soc Nephrol (2012) 23(7):1221-8. Epub 2012/05/26. doi: 10.1681/ASN.2011090940. PubMed PMID: 22626819; PubMed Central PMCID: PMCPMC3380645.

423. Biobaku F, Ghanim H, Batra M, Dandona P. Macronutrient-Mediated Inflammation and Oxidative Stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis. J Clin Endocrinol Metab (2019) 104(12):6118-28. Epub 2019/06/21. doi: 10.1210/jc.2018-01833. PubMed PMID: 31219543.

424. Blagojevic IP, Ignjatovic S, Macut D, Kotur-Stevuljevic J, Bozic-Antic I, Vekic J, et al. Evaluation of a Summary Score for Dyslipidemia, Oxidative Stress and Inflammation (the Doi Score) in Women with Polycystic Ovary Syndrome and its Relationship with Obesity. J Med Biochem (2018) 37(4):476-85. Epub 2018/12/26. doi: 10.2478/jomb-2018-0008. PubMed PMID: 30584408; PubMed Central PMCID: PMCPMC6298479.

425. Boini KM, Xia M, Koka S, Gehr TW, Li PL. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: role of acid sphingomyelinase gene. Oncotarget (2016) 7(14):19031-44. Epub 2016/03/17. doi: 10.18632/oncotarget.8023. PubMed PMID: 26980705; PubMed Central PMCID: PMCPMC4951349.

426. Bondar KY, Belaya OL, Lazutina OM, Kuropteva ZV, Raider LM, Artamoshina NE, et al. [Atorvastatin and oxidative stress in coronary heart disease with obesity]. Klin Med (Mosk) (2012) 90(10):34-8. Epub 2013/01/05. PubMed PMID: 23285760.

427. Bonnefont-Rousselot D. Obesity and oxidative stress: potential roles of melatonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord Drug Targets (2014) 14(3):159-68. Epub 2014/06/18. doi: 10.2174/1871530314666140604151452. PubMed PMID: 24934925.

428. Boudina S, Sena S, Sloan C, Tebbi A, Han YH, O’Neill BT, et al. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Endocrinology (2012) 153(6):2677-88. Epub 2012/04/19. doi: 10.1210/en.2011-2147. PubMed PMID: 22510273; PubMed Central PMCID: PMCPMC3359615.

429. Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol 2000 (2014) 64(1):139-53. Epub 2013/12/11. doi: 10.1111/j.1600-0757.2012.00455.x. PubMed PMID: 24320961.

430. Calmasini FB, de Oliveira MG, Alexandre EC, Silva FH, Tavares EBG, Andre DM, et al. Obesity-induced mouse benign prostatic hyperplasia (BPH) is improved by treatment with resveratrol: implication of oxidative stress, insulin sensitivity and neuronal growth factor. J Nutr Biochem (2018) 55:53-8. Epub 2018/02/08. doi: 10.1016/j.jnutbio.2017.12.009. PubMed PMID: 29413489.

431. Camell CD, Nguyen KY, Jurczak MJ, Christian BE, Shulman GI, Shadel GS, et al. Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity. J Biol Chem (2015) 290(49):29402-13. Epub 2015/10/07. doi: 10.1074/jbc.M115.680199. PubMed PMID: 26438821; PubMed Central PMCID: PMCPMC4705943.

432. Carillon J, Romain C, Bardy G, Fouret G, Feillet-Coudray C, Gaillet S, et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase. Free Radic Biol Med (2013) 65:254-61. Epub 2013/06/25. doi: 10.1016/j.freeradbiomed.2013.06.022. PubMed PMID: 23792771.

433. Carmona-Montesinos E, Velazquez-Perez R, Pichardo Aguirre E, Rivas-Arancibia S. Obesity, Oxidative Stress, and Their Effect on Serum Heme Oxygenase-1 Concentrations and Insulin in Children Aged 3 to 5 Years in a Pediatric Hospital of the Ministry of Health CDMX. Child Obes (2016) 12(6):474-81. Epub 2016/10/12. doi: 10.1089/chi.2016.0155. PubMed PMID: 27728771.

434. Carpita B, Muti D, Dell’Osso L. Oxidative Stress, Maternal Diabetes, and Autism Spectrum Disorders. Oxid Med Cell Longev (2018) 2018:3717215. Epub 2018/12/14. doi: 10.1155/2018/3717215. PubMed PMID: 30524654; PubMed Central PMCID: PMCPMC6247386.

435. Carvajal K, Balderas-Villalobos J, Bello-Sanchez MD, Phillips-Farfan B, Molina-Munoz T, Aldana-Quintero H, et al. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium (2014) 56(5):408-15. Epub 2014/08/30. doi: 10.1016/j.ceca.2014.08.003. PubMed PMID: 25168907.

436. Castilla-Peon MF, Medina Bravo PG, Sanchez-Urbina R, Gallardo-Montoya JM, Soriano-Lopez LC, Coronel Cruz FM. Diabetes and obesity during pregnancy are associated with oxidative stress genotoxicity in newborns. J Perinat Med (2019) 47(3):347-53. Epub 2019/01/25. doi: 10.1515/jpm-2018-0201. PubMed PMID: 30676004.

437. Cerda C, Sanchez C, Climent B, Vazquez A, Iradi A, El Amrani F, et al. Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv Exp Med Biol (2014) 824:5-17. Epub 2014/07/21. doi: 10.1007/978-3-319-07320-0_2. PubMed PMID: 25038989.

438. Chang YC, Yu YH, Shew JY, Lee WJ, Hwang JJ, Chen YH, et al. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med (2013) 5(8):1165-79. Epub 2013/07/06. doi: 10.1002/emmm.201302679. PubMed PMID: 23828861; PubMed Central PMCID: PMCPMC3944459.

439. Chaudhari HS, Bhandari U, Khanna G. Preventive effect of embelin from embelia ribes on lipid metabolism and oxidative stress in high-fat diet-induced obesity in rats. Planta Med (2012) 78(7):651-7. Epub 2012/03/28. doi: 10.1055/s-0031-1298379. PubMed PMID: 22450777.

440. Chen L, Xu WM, Zhang D. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome. Fertil Steril (2014) 102(4):1167-74 e4. Epub 2014/07/30. doi: 10.1016/j.fertnstert.2014.06.027. PubMed PMID: 25064406.

441. Chen T, Hill JT, Moore TM, Cheung ECK, Olsen ZE, Piorczynski TB, et al. Lack of skeletal muscle liver kinase B1 alters gene expression, mitochondrial content, inflammation and oxidative stress without affecting high-fat diet-induced obesity or insulin resistance. Biochim Biophys Acta Mol Basis Dis (2020) 1866(8):165805. Epub 2020/04/28. doi: 10.1016/j.bbadis.2020.165805. PubMed PMID: 32339642.

442. Chenxu G, Minxuan X, Yuting Q, Tingting G, Jing F, Jinxiao L, et al. Loss of RIP3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: A mechanism involving Toll-like receptor 4 and oxidative stress. Free Radic Biol Med (2019) 134:23-41. Epub 2019/01/02. doi: 10.1016/j.freeradbiomed.2018.12.034. PubMed PMID: 30599260.

443. Codoner-Franch P, Boix-Garcia L, Simo-Jorda R, Del Castillo-Villaescusa C, Maset-Maldonado J, Valls-Belles V. Is obesity associated with oxidative stress in children? Int J Pediatr Obes (2010) 5(1):56-63. Epub 2009/07/01. doi: 10.3109/17477160903055945. PubMed PMID: 19565402.

444. Collins KH, Herzog W, Reimer RA, Reno CR, Heard BJ, Hart DA. Diet-induced obesity leads to pro-inflammatory alterations to the vitreous humour of the eye in a rat model. Inflamm Res (2018) 67(2):139-46. Epub 2017/10/28. doi: 10.1007/s00011-017-1102-y. PubMed PMID: 29075814.

445. Costa MC, Lima TFO, Arcaro CA, Inacio MD, Batista-Duharte A, Carlos IZ, et al. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J Nutr Biochem (2020) 76:108303. Epub 2019/12/10. doi: 10.1016/j.jnutbio.2019.108303. PubMed PMID: 31812909.

446. Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J (2019) 40(4):383-91. Epub 2017/10/28. doi: 10.1093/eurheartj/ehx615. PubMed PMID: 29077881.

447. De Tursi Rispoli L, Vazquez Tarragon A, Vazquez Prado A, Saez Tormo G, Mahmoud Ismail A, Gumbau Puchol V. [Oxidative stress; a comparative study between normal and morbid obesity group population]. Nutr Hosp (2013) 28(3):671-5. Epub 2013/07/16. doi: 10.3305/nh.2013.28.3.6355. PubMed PMID: 23848087.

448. Delvarianzadeh M, Abbasian M, Khosravi F, Ebrahimi H, Ebrahimi MH, Fazli M. Appropriate anthropometric indices of obesity and overweight for diagnosis of metabolic syndrome and its relationship with oxidative stress. Diabetes Metab Syndr (2017) 11 Suppl 2:S907-S11. Epub 2017/07/18. doi: 10.1016/j.dsx.2017.07.014. PubMed PMID: 28712821.

449. Deshpande SS, Nemani H, Pothani S, Balasinor NH. Altered endocrine, cytokine signaling and oxidative stress: A plausible reason for differential changes in testicular cells in diet-induced and genetically-inherited – obesity in adult rats. Reprod Biol (2019) 19(3):303-8. Epub 2019/07/06. doi: 10.1016/j.repbio.2019.06.005. PubMed PMID: 31272928.

450. Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, et al. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne) (2019) 10:540. Epub 2019/08/29. doi: 10.3389/fendo.2019.00540. PubMed PMID: 31456748; PubMed Central PMCID: PMCPMC6701166.

451. Dimova LG, Battista S, Plosch T, Kampen RA, Liu F, Verkaik-Schakel RN, et al. Gestational oxidative stress protects against adult obesity and insulin resistance. Redox Biol (2020) 28:101329. Epub 2019/09/25. doi: 10.1016/j.redox.2019.101329. PubMed PMID: 31550664; PubMed Central PMCID: PMCPMC6812053.

452. Ding C, Zhao Y, Shi X, Zhang N, Zu G, Li Z, et al. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats. Sci Rep (2016) 6:28734. Epub 2016/06/28. doi: 10.1038/srep28734. PubMed PMID: 27345365; PubMed Central PMCID: PMCPMC4922017.

453. Dorjgochoo T, Gao YT, Chow WH, Shu XO, Yang G, Cai Q, et al. Obesity, age, and oxidative stress in middle-aged and older women. Antioxid Redox Signal (2011) 14(12):2453-60. Epub 2010/11/04. doi: 10.1089/ars.2010.3337. PubMed PMID: 21043829; PubMed Central PMCID: PMCPMC3096497.

454. Doronzo G, Viretto M, Barale C, Russo I, Mattiello L, Anfossi G, et al. Oleic acid increases synthesis and secretion of VEGF in rat vascular smooth muscle cells: role of oxidative stress and impairment in obesity. Int J Mol Sci (2013) 14(9):18861-80. Epub 2013/09/26. doi: 10.3390/ijms140918861. PubMed PMID: 24065093; PubMed Central PMCID: PMCPMC3794811.

455. Dursun E, Akalin FA, Genc T, Cinar N, Erel O, Yildiz BO. Oxidative Stress and Periodontal Disease in Obesity. Medicine (Baltimore) (2016) 95(12):e3136. Epub 2016/03/26. doi: 10.1097/MD.0000000000003136. PubMed PMID: 27015191; PubMed Central PMCID: PMCPMC4998386 study.

456. Effting PS, Brescianini SMS, Sorato HR, Fernandes BB, Fidelis G, Silva P, et al. Resistance Exercise Modulates Oxidative Stress Parameters and TNF-alpha Content in the Heart of Mice with Diet-Induced Obesity. Arq Bras Cardiol (2019) 112(5):545-52. Epub 2019/05/01. doi: 10.5935/abc.20190072. PubMed PMID: 31038529; PubMed Central PMCID: PMCPMC6555563.

457. Elariny HA, Baranova A. Comment on: Diet-induced obesity associated with steatosis, oxidative stress and inflammation in liver. Surg Obes Relat Dis (2012) 8(1):81-3. Epub 2011/11/29. doi: 10.1016/j.soard.2011.10.004. PubMed PMID: 22118841.

458. Elsworthy RJ, Aldred S. The effect of age and obesity on platelet amyloid precursor protein processing and plasma markers of oxidative stress and inflammation. Exp Gerontol (2020) 132:110838. Epub 2020/01/26. doi: 10.1016/j.exger.2020.110838. PubMed PMID: 31981682.

459. Emami SR, Jafari M, Haghshenas R, Ravasi A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc Nutrition Biochem (2016) 20(1):29-35. Epub 2016/06/15. doi: 10.20463/jenb.2016. PubMed PMID: 27298810; PubMed Central PMCID: PMCPMC4899893.

460. Engin A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol (2017) 960:221-45. Epub 2017/06/07. doi: 10.1007/978-3-319-48382-5_9. PubMed PMID: 28585201.

461. Eo H, Park JE, Jeon YJ, Lim Y. Ameliorative Effect of Ecklonia cava Polyphenol Extract on Renal Inflammation Associated with Aberrant Energy Metabolism and Oxidative Stress in High Fat Diet-Induced Obese Mice. J Agric Food Chem (2017) 65(19):3811-8. Epub 2017/05/02. doi: 10.1021/acs.jafc.7b00357. PubMed PMID: 28459555.

462. Erdemir F, Atilgan D, Markoc F, Boztepe O, Suha-Parlaktas B, Sahin S. [The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters]. Actas Urol Esp (2012) 36(3):153-9. Epub 2011/10/01. doi: 10.1016/j.acuro.2011.06.019. PubMed PMID: 21959063.

463. Fabbrini E, Serafini M, Klein S. Response to Comment on Fabbrini et al. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 2014;63:976-981. Diabetes (2014) 63(9):e19. Epub 2014/08/26. doi: 10.2337/db14-0885. PubMed PMID: 25146480.

464. Faienza MF, Francavilla R, Goffredo R, Ventura A, Marzano F, Panzarino G, et al. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm Res Paediatr (2012) 78(3):158-64. Epub 2012/10/12. doi: 10.1159/000342642. PubMed PMID: 23052543.

465. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci (2011) 12(5):3117-32. Epub 2011/06/21. doi: 10.3390/ijms12053117. PubMed PMID: 21686173; PubMed Central PMCID: PMCPMC3116179.

466. Frontiers Production O. Erratum: The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne) (2019) 10:693. Epub 2019/10/15. doi: 10.3389/fendo.2019.00693. PubMed PMID: 31608015; PubMed Central PMCID: PMCPMC6777438.

467. Fruhbeck G, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Valenti V, Moncada R, et al. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress. Metabolism (2018) 87:123-35. Epub 2018/04/22. doi: 10.1016/j.metabol.2018.04.004. PubMed PMID: 29679615.

468. Galassetti P. Inflammation and oxidative stress in obesity, metabolic syndrome, and diabetes. Exp Diabetes Res (2012) 2012:943706. Epub 2013/01/16. doi: 10.1155/2012/943706. PubMed PMID: 23319940; PubMed Central PMCID: PMCPMC3540748.

469. Gallardo JM, Gomez-Lopez J, Medina-Bravo P, Juarez-Sanchez F, Contreras-Ramos A, Galicia-Esquivel M, et al. Maternal obesity increases oxidative stress in the newborn. Obesity (Silver Spring) (2015) 23(8):1650-4. Epub 2015/07/21. doi: 10.1002/oby.21159. PubMed PMID: 26193060.

470. Gaman MA, Epingeac ME, Diaconu CC, Gaman AM. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World J Diabetes (2020) 11(5):193-201. Epub 2020/06/02. doi: 10.4239/wjd.v11.i5.193. PubMed PMID: 32477455; PubMed Central PMCID: PMCPMC7243484.

471. Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol (2019) 41(5):607-18. Epub 2019/09/15. doi: 10.1007/s00281-019-00753-4. PubMed PMID: 31520179; PubMed Central PMCID: PMCPMC6814643.

472. An YW, Jhang KA, Woo SY, Kang JL, Chong YH. Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging (2016) 38:1-10. Epub 2016/02/02. doi: 10.1016/j.neurobiolaging.2015.10.016. PubMed PMID: 26827637.

473. Arroba AI, Rodriguez-de la Rosa L, Murillo-Cuesta S, Vaquero-Villanueva L, Hurle JM, Varela-Nieto I, et al. Autophagy resolves early retinal inflammation in Igf1-deficient mice. Dis Model Mech (2016) 9(9):965-74. Epub 2016/08/03. doi: 10.1242/dmm.026344. PubMed PMID: 27483352; PubMed Central PMCID: PMCPMC5047685.

474. Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S, et al. Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev (2018) 172:131-7. Epub 2018/03/17. doi: 10.1016/j.mad.2018.03.003. PubMed PMID: 29545203.

475. Bae HR, Kim DH, Park MH, Lee B, Kim MJ, Lee EK, et al. beta-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget (2016) 7(41):66444-54. Epub 2016/09/24. doi: 10.18632/oncotarget.12119. PubMed PMID: 27661104; PubMed Central PMCID: PMCPMC5341812.

476. Baldwin AG, Brough D, Freeman S. Inhibiting the Inflammasome: A Chemical Perspective. J Med Chem (2016) 59(5):1691-710. Epub 2015/10/01. doi: 10.1021/acs.jmedchem.5b01091. PubMed PMID: 26422006.

477. Bauernfeind F, Niepmann S, Knolle PA, Hornung V. Aging-Associated TNF Production Primes Inflammasome Activation and NLRP3-Related Metabolic Disturbances. J Immunol (2016) 197(7):2900-8. Epub 2016/08/28. doi: 10.4049/jimmunol.1501336. PubMed PMID: 27566828.

478. Brydges SD, Broderick L, McGeough MD, Pena CA, Mueller JL, Hoffman HM. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest (2013) 123(11):4695-705. Epub 2013/10/03. doi: 10.1172/JCI71543. PubMed PMID: 24084736; PubMed Central PMCID: PMCPMC3809806.

479. Butler MJ, Cole RM, Deems NP, Belury MA, Barrientos RM. Fatty food, fatty acids, and microglial priming in the adult and aged hippocampus and amygdala. Brain Behav Immun (2020). Epub 2020/06/17. doi: 10.1016/j.bbi.2020.06.010. PubMed PMID: 32544595.

480. Camell C, Goldberg E, Dixit VD. Regulation of Nlrp3 inflammasome by dietary metabolites. Semin Immunol (2015) 27(5):334-42. Epub 2016/01/19. doi: 10.1016/j.smim.2015.10.004. PubMed PMID: 26776831; PubMed Central PMCID: PMCPMC4821737.

481. Camell CD, Gunther P, Lee A, Goldberg EL, Spadaro O, Youm YH, et al. Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metab (2019) 30(6):1024-39 e6. Epub 2019/11/19. doi: 10.1016/j.cmet.2019.10.006. PubMed PMID: 31735593; PubMed Central PMCID: PMCPMC6944439.

482. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature (2017) 550(7674):119-23. Epub 2017/09/28. doi: 10.1038/nature24022. PubMed PMID: 28953873; PubMed Central PMCID: PMCPMC5718149.

483. Canadas-Lozano D, Marin-Aguilar F, Castejon-Vega B, Ryffel B, Navarro-Pando JM, Ruiz-Cabello J, et al. Blockade of the NLRP3 inflammasome improves metabolic health and lifespan in obese mice. Geroscience (2020) 42(2):715-25. Epub 2020/01/25. doi: 10.1007/s11357-019-00151-6. PubMed PMID: 31975052; PubMed Central PMCID: PMCPMC7206474.

484. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging (2017) 49:60-8. Epub 2016/10/25. doi: 10.1016/j.neurobiolaging.2016.08.019. PubMed PMID: 27776263.

485. Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, et al. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol (2015) 309(4):L378-87. Epub 2015/06/14. doi: 10.1152/ajplung.00342.2014. PubMed PMID: 26071556.

486. Chauhan D, Bartok E, Gaidt MM, Bock FJ, Herrmann J, Seeger JM, et al. BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1beta Maturation in Macrophages. Cell Rep (2018) 25(9):2354-68 e5. Epub 2018/11/30. doi: 10.1016/j.celrep.2018.10.087. PubMed PMID: 30485805.

487. Chaurasia SS, Lim RR, Parikh BH, Wey YS, Tun BB, Wong TY, et al. The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Sci Rep (2018) 8(1):2847. Epub 2018/02/13. doi: 10.1038/s41598-018-21198-z. PubMed PMID: 29434227; PubMed Central PMCID: PMCPMC5809448.

488. Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol (2017) 11:263-74. Epub 2016/12/25. doi: 10.1016/j.redox.2016.12.018. PubMed PMID: 28012441; PubMed Central PMCID: PMCPMC5198739.

489. Chen Y, Yin M, Cao X, Hu G, Xiao M. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain. Aging Dis (2018) 9(3):374-90. Epub 2018/06/14. doi: 10.14336/AD.2017.0706. PubMed PMID: 29896426; PubMed Central PMCID: PMCPMC5988593.

490. Cho SJ, Plataki M, Mitzel D, Lowry G, Rooney K, Stout-Delgado H. Decreased NLRP3 inflammasome expression in aged lung may contribute to increased susceptibility to secondary Streptococcus pneumoniae infection. Exp Gerontol (2018) 105:40-6. Epub 2017/12/06. doi: 10.1016/j.exger.2017.11.010. PubMed PMID: 29203400; PubMed Central PMCID: PMCPMC5869149.

491. Cho SJ, Rooney K, Choi AMK, Stout-Delgado HW. NLRP3 inflammasome activation in aged macrophages is diminished during Streptococcus pneumoniae infection. Am J Physiol Lung Cell Mol Physiol (2018) 314(3):L372-L87. Epub 2017/11/04. doi: 10.1152/ajplung.00393.2017. PubMed PMID: 29097427; PubMed Central PMCID: PMCPMC5900358.

492. Chuang SY, Lin CH, Fang JY. Natural compounds and aging: between autophagy and inflammasome. Biomed Res Int (2014) 2014:297293. Epub 2014/10/10. doi: 10.1155/2014/297293. PubMed PMID: 25298963; PubMed Central PMCID: PMCPMC4179937.

493. Claycombe-Larson KJ, Alvine T, Wu D, Kalupahana NS, Moustaid-Moussa N, Roemmich JN. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr (2020) 150(7):1693-704. Epub 2020/04/10. doi: 10.1093/jn/nxaa085. PubMed PMID: 32271912.

494. Cong L, Gao Z, Zheng Y, Ye T, Wang Z, Wang P, et al. Electrical stimulation inhibits Val-boroPro-induced pyroptosis in THP-1 macrophages via sirtuin3 activation to promote autophagy and inhibit ROS generation. Aging (Albany NY) (2020) 12(7):6415-35. Epub 2020/04/15. doi: 10.18632/aging.103038. PubMed PMID: 32289749; PubMed Central PMCID: PMCPMC7185124.

495. Connat JL, Dumont A, Rialland M, Faivre B, Sorci G. Nlrp3 Gene Expression in Circulating Leukocytes Declines During Healthy Aging. J Gerontol A Biol Sci Med Sci (2018) 73(8):1045-9. Epub 2018/02/08. doi: 10.1093/gerona/gly018. PubMed PMID: 29415184.

496. Cordero MD, Williams MR, Ryffel B. AMP-Activated Protein Kinase Regulation of the NLRP3 Inflammasome during Aging. Trends Endocrinol Metab (2018) 29(1):8-17. Epub 2017/11/19. doi: 10.1016/j.tem.2017.10.009. PubMed PMID: 29150317.

497. Correa-Silva S, Alencar AP, Moreli JB, Borbely AU, de SLL, Scavone C, et al. Hyperglycemia induces inflammatory mediators in the human chorionic villous. Cytokine (2018) 111:41-8. Epub 2018/08/17. doi: 10.1016/j.cyto.2018.07.020. PubMed PMID: 30114628.

498. Couchie D, Vaisman B, Abderrazak A, Mahmood DFD, Hamza MM, Canesi F, et al. Human Plasma Thioredoxin-80 Increases With Age and in ApoE(-/-) Mice Induces Inflammation, Angiogenesis, and Atherosclerosis. Circulation (2017) 136(5):464-75. Epub 2017/05/06. doi: 10.1161/CIRCULATIONAHA.117.027612. PubMed PMID: 28473446.

499. Cui HX, Chen JH, Li JW, Cheng FR, Yuan K. Protection of Anthocyanin from Myrica rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-kappaB and NLRP3 Pathways. Molecules (2018) 23(7). Epub 2018/07/25. doi: 10.3390/molecules23071788. PubMed PMID: 30036952; PubMed Central PMCID: PMCPMC6099489.

500. Cull AH, Rauh MJ. Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol (2017) 102(2):209-19. Epub 2017/06/10. doi: 10.1189/jlb.5RI0317-083R. PubMed PMID: 28596252.

501. Escarcega RO, Lipinski MJ, Garcia-Carrasco M, Mendoza-Pinto C, Galvez-Romero JL, Cervera R. Inflammation and atherosclerosis: Cardiovascular evaluation in patients with autoimmune diseases. Autoimmun Rev (2018) 17(7):703-8. Epub 2018/05/08. doi: 10.1016/j.autrev.2018.01.021. PubMed PMID: 29730525.

502. Fan Y, Du L, Fu Q, Zhou Z, Zhang J, Li G, et al. Inhibiting the NLRP3 Inflammasome With MCC950 Ameliorates Isoflurane-Induced Pyroptosis and Cognitive Impairment in Aged Mice. Front Cell Neurosci (2018) 12:426. Epub 2018/12/14. doi: 10.3389/fncel.2018.00426. PubMed PMID: 30524241; PubMed Central PMCID: PMCPMC6262296.

503. Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, et al. Evidence that NF-kappaB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol Neurobiol (2018) 55(2):1082-96. Epub 2017/01/17. doi: 10.1007/s12035-017-0394-9. PubMed PMID: 28092085.

504. Fann DY, Santro T, Manzanero S, Widiapradja A, Cheng YL, Lee SY, et al. Intermittent fasting attenuates inflammasome activity in ischemic stroke. Exp Neurol (2014) 257:114-9. Epub 2014/05/09. doi: 10.1016/j.expneurol.2014.04.017. PubMed PMID: 24805069.

505. Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev (2015) 24(Pt A):29-39. Epub 2015/02/03. doi: 10.1016/j.arr.2015.01.003. PubMed PMID: 25641058.

506. Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, et al. Genome Editing of Human Primary Keratinocytes by CRISPR/Cas9 Reveals an Essential Role of the NLRP1 Inflammasome in UVB Sensing. J Invest Dermatol (2018) 138(12):2644-52. Epub 2018/08/11. doi: 10.1016/j.jid.2018.07.016. PubMed PMID: 30096351.

507. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science (2017) 355(6327):842-7. Epub 2017/01/21. doi: 10.1126/science.aag1381. PubMed PMID: 28104796; PubMed Central PMCID: PMCPMC5542057.

508. Garcia-Martinez I, Shaker ME, Mehal WZ. Therapeutic Opportunities in Damage-Associated Molecular Pattern-Driven Metabolic Diseases. Antioxid Redox Signal (2015) 23(17):1305-15. Epub 2015/06/10. doi: 10.1089/ars.2015.6383. PubMed PMID: 26055926; PubMed Central PMCID: PMCPMC4685500.

509. Geng J, Liu J, Yuan X, Liu W, Guo W. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol Appl Pharmacol (2019) 379:114688. Epub 2019/07/25. doi: 10.1016/j.taap.2019.114688. PubMed PMID: 31340160.

510. Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res (2013) 54(9):2423-36. Epub 2013/07/10. doi: 10.1194/jlr.M038638. PubMed PMID: 23836106; PubMed Central PMCID: PMCPMC3735940.

511. Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, et al. beta-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Rep (2017) 18(9):2077-87. Epub 2017/03/02. doi: 10.1016/j.celrep.2017.02.004. PubMed PMID: 28249154; PubMed Central PMCID: PMCPMC5527297.

512. Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev (2015) 265(1):63-74. Epub 2015/04/17. doi: 10.1111/imr.12295. PubMed PMID: 25879284; PubMed Central PMCID: PMCPMC4400872.

513. Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem (2020) 80:108360. Epub 2020/03/13. doi: 10.1016/j.jnutbio.2020.108360. PubMed PMID: 32163821; PubMed Central PMCID: PMCPMC7242157.

514. Gonzalez-Mariscal I, Montoro RA, Doyle ME, Liu QR, Rouse M, O’Connell JF, et al. Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets. Diabetologia (2018) 61(6):1470-83. Epub 2018/03/03. doi: 10.1007/s00125-018-4576-4. PubMed PMID: 29497784; PubMed Central PMCID: PMCPMC6201315.

515. Gu Y, Ren K, Jiang C, Wang L, Yao Q. Regulation of cartilage damage caused by lack of Klotho with thioredoxin/peroxiredoxin (Trx/Prx) system and succedent NLRP3 activation in osteoarthritis mice. Am J Transl Res (2019) 11(12):7338-50. Epub 2020/01/15. PubMed PMID: 31934282; PubMed Central PMCID: PMCPMC6943451.

516. Guo H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, et al. Nickel induces inflammatory activation via NF-kappaB, MAPKs, IRF3 and NLRP3 inflammasome signaling pathways in macrophages. Aging (Albany NY) (2019) 11(23):11659-72. Epub 2019/12/12. doi: 10.18632/aging.102570. PubMed PMID: 31822637; PubMed Central PMCID: PMCPMC6932914.

517. Gupta M, Wani A, Ul Ahsan A, Chopra M, Vishwakarma RA, Singh G, et al. Soluble Abeta1-42 suppresses TNF-alpha and activates NLRP3 inflammasome in THP-1 macrophages. Cytokine (2018) 111:84-7. Epub 2018/08/21. doi: 10.1016/j.cyto.2018.07.026. PubMed PMID: 30125779.

518. Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy (2019) 15(11):1860-81. Epub 2019/04/11. doi: 10.1080/15548627.2019.1596481. PubMed PMID: 30966861; PubMed Central PMCID: PMCPMC6844502.

519. Hanouna G, Mesnard L, Vandermeersch S, Perez J, Placier S, Haymann JP, et al. Specific calpain inhibition protects kidney against inflammaging. Sci Rep (2017) 7(1):8016. Epub 2017/08/16. doi: 10.1038/s41598-017-07922-1. PubMed PMID: 28808241; PubMed Central PMCID: PMCPMC5556007.

520. Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res (2018) 65(4):e12525. Epub 2018/09/23. doi: 10.1111/jpi.12525. PubMed PMID: 30242884.

521. Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci (2019) 20(5). Epub 2019/03/14. doi: 10.3390/ijms20051223. PubMed PMID: 30862067; PubMed Central PMCID: PMCPMC6429360.

522. He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, et al. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab (2020) 31(3):580-91 e5. Epub 2020/02/08. doi: 10.1016/j.cmet.2020.01.009. PubMed PMID: 32032542; PubMed Central PMCID: PMCPMC7104778.

523. He X, Yang W, Zeng Z, Wei Y, Gao J, Zhang B, et al. NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol (2020) 17(3):283-99. Epub 2019/07/20. doi: 10.1038/s41423-019-0260-y. PubMed PMID: 31320730; PubMed Central PMCID: PMCPMC7052202.

524. Hiramoto K, Kobayashi H, Yamate Y, Ishii M, Sato EF. Intercellular pathway through hyaluronic acid in UVB-induced inflammation. Exp Dermatol (2012) 21(12):911-4. Epub 2012/11/23. doi: 10.1111/exd.12032. PubMed PMID: 23171450.

525. Hou Z, Li F, Chen J, Liu Y, He C, Wang M, et al. Beneficial Effects of Sagacious Confucius’ Pillow Elixir on Cognitive Function in Senescence-Accelerated P8 Mice (SAMP8) via the NLRP3/Caspase-1 Pathway. Evid Based Complement Alternat Med (2019) 2019:3097923. Epub 2019/11/30. doi: 10.1155/2019/3097923. PubMed PMID: 31781266; PubMed Central PMCID: PMCPMC6874996 publication of this paper.

526. Huang X, Yang X, Ni J, Xie B, Liu Y, Xuan D, et al. Hyperglucose contributes to periodontitis: involvement of the NLRP3 pathway by engaging the innate immunity of oral gingival epithelium. J Periodontol (2015) 86(2):327-35. Epub 2014/10/18. doi: 10.1902/jop.2014.140403. PubMed PMID: 25325516.

527. Iida T, Hirayama D, Minami N, Matsuura M, Wagatsuma K, Kawakami K, et al. Down-regulation of RalGTPase-Activating Protein Promotes Colitis-Associated Cancer via NLRP3 Inflammasome Activation. Cell Mol Gastroenterol Hepatol (2020) 9(2):277-93. Epub 2019/10/18. doi: 10.1016/j.jcmgh.2019.10.003. PubMed PMID: 31622786; PubMed Central PMCID: PMCPMC6957823.

528. Jabalie G, Ahmadi M, Koushaeian L, Eghbal-Fard S, Mehdizadeh A, Kamrani A, et al. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. Am J Reprod Immunol (2019) 81(3):e13086. Epub 2019/01/08. doi: 10.1111/aji.13086. PubMed PMID: 30614120.

529. Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, et al. Telomere Dysfunction Disturbs Macrophage Mitochondrial Metabolism and the NLRP3 Inflammasome through the PGC-1alpha/TNFAIP3 Axis. Cell Rep (2018) 22(13):3493-506. Epub 2018/03/29. doi: 10.1016/j.celrep.2018.02.071. PubMed PMID: 29590618.

530. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci (2016) 73(9):1765-86. Epub 2016/02/08. doi: 10.1007/s00018-016-2147-8. PubMed PMID: 26852158; PubMed Central PMCID: PMCPMC4819943.

531. Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, et al. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ (2015) 22(10):1676-86. Epub 2015/03/07. doi: 10.1038/cdd.2015.16. PubMed PMID: 25744023; PubMed Central PMCID: PMCPMC4563782.

532. Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D, Apicella I, et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat Med (2018) 24(1):50-61. Epub 2017/11/28. doi: 10.1038/nm.4450. PubMed PMID: 29176737; PubMed Central PMCID: PMCPMC5760363.

533. Kim DH, Kim SM, Lee B, Lee EK, Chung KW, Moon KM, et al. Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J Nutr Biochem (2017) 45:104-14. Epub 2017/05/13. doi: 10.1016/j.jnutbio.2017.04.014. PubMed PMID: 28499186.

534. Kim HK, Andreazza AC, Elmi N, Chen W, Young LT. Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. J Psychiatr Res (2016) 72:43-50. Epub 2015/11/06. doi: 10.1016/j.jpsychires.2015.10.015. PubMed PMID: 26540403.

535. Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients (2020) 12(7). Epub 2020/07/08. doi: 10.3390/nu12071959. PubMed PMID: 32630045.

536. Krishnan D, Menon RN, Mathuranath PS, Gopala S. A novel role for SHARPIN in amyloid-beta phagocytosis and inflammation by peripheral blood-derived macrophages in Alzheimer’s disease. Neurobiol Aging (2020) 93:131-41. Epub 2020/03/14. doi: 10.1016/j.neurobiolaging.2020.02.001. PubMed PMID: 32165044.

537. Krone CL, Trzcinski K, Zborowski T, Sanders EA, Bogaert D. Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumoniae colonization. Infect Immun (2013) 81(12):4615-25. Epub 2013/10/02. doi: 10.1128/IAI.00618-13. PubMed PMID: 24082075; PubMed Central PMCID: PMCPMC3837976.

538. Kunnas T, Maatta K, Nikkari ST. NLR family pyrin domain containing 3 (NLRP3) inflammasome gene polymorphism rs7512998 (C>T) predicts aging-related increase of blood pressure, the TAMRISK study. Immun Ageing (2015) 12:19. Epub 2015/11/03. doi: 10.1186/s12979-015-0047-7. PubMed PMID: 26523150; PubMed Central PMCID: PMCPMC4628348.

539. Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes (2016) 65(3):610-8. Epub 2016/01/01. doi: 10.2337/db15-1478. PubMed PMID: 26718495; PubMed Central PMCID: PMCPMC4764142.

540. Lai M, Yao H, Shah SZA, Wu W, Wang D, Zhao Y, et al. The NLRP3-Caspase 1 Inflammasome Negatively Regulates Autophagy via TLR4-TRIF in Prion Peptide-Infected Microglia. Front Aging Neurosci (2018) 10:116. Epub 2018/05/04. doi: 10.3389/fnagi.2018.00116. PubMed PMID: 29720937; PubMed Central PMCID: PMCPMC5915529.

541. Latz E, Duewell P. NLRP3 inflammasome activation in inflammaging. Semin Immunol (2018) 40:61-73. Epub 2018/10/01. doi: 10.1016/j.smim.2018.09.001. PubMed PMID: 30268598.

542. Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, et al. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J Biophotonics (2017) 10(11):1502-13. Epub 2017/02/07. doi: 10.1002/jbio.201600244. PubMed PMID: 28164443.

543. Lee JS, Robertson AAB, Cooper MA, Khosrotehrani K. The Small Molecule NLRP3 Inflammasome Inhibitor MCC950 Does Not Alter Wound Healing in Obese Mice. Int J Mol Sci (2018) 19(11). Epub 2018/10/27. doi: 10.3390/ijms19113289. PubMed PMID: 30360489; PubMed Central PMCID: PMCPMC6274704.

544. Li L, Liu Y. Aging-related gene signature regulated by Nlrp3 predicts glioma progression. Am J Cancer Res (2015) 5(1):442-9. Epub 2015/01/30. PubMed PMID: 25628952; PubMed Central PMCID: PMCPMC4300695.

545. Li X, Thome S, Ma X, Amrute-Nayak M, Finigan A, Kitt L, et al. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat Commun (2017) 8:15986. Epub 2017/06/29. doi: 10.1038/ncomms15986. PubMed PMID: 28656979; PubMed Central PMCID: PMCPMC5493753.

546. Lin X, Ye H, Siaw-Debrah F, Pan S, He Z, Ni H, et al. AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage. Biomed Res Int (2018) 2018:3706047. Epub 2018/11/10. doi: 10.1155/2018/3706047. PubMed PMID: 30410928; PubMed Central PMCID: PMCPMC6206581.

547. Liu C, Zhuo H, Ye MY, Huang GX, Fan M, Huang XZ. LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J Med Sci (2020). Epub 2020/05/12. doi: 10.1002/kjm2.12226. PubMed PMID: 32391974.

548. Liu J, Cai J, Fan P, Zhang N, Cao Y. The Abilities of Salidroside on Ameliorating Inflammation, Skewing the Imbalanced Nucleotide Oligomerization Domain-Like Receptor Family Pyrin Domain Containing 3/Autophagy, and Maintaining Intestinal Barrier Are Profitable in Colitis. Front Pharmacol (2019) 10:1385. Epub 2019/12/19. doi: 10.3389/fphar.2019.01385. PubMed PMID: 31849652; PubMed Central PMCID: PMCPMC6901016.

549. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY) (2019) 11(18):7830-46. Epub 2019/09/26. doi: 10.18632/aging.102291. PubMed PMID: 31553952; PubMed Central PMCID: PMCPMC6781979.

550. Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci (2017) 9:165. Epub 2017/06/10. doi: 10.3389/fnagi.2017.00165. PubMed PMID: 28596733; PubMed Central PMCID: PMCPMC5442221.

551. Liu Z, Li Y, Yu L, Chang Y, Yu J. Penehyclidine hydrochloride inhibits renal ischemia/reperfusion-induced acute lung injury by activating the Nrf2 pathway. Aging (Albany NY) (2020) 12. Epub 2020/07/12. doi: 10.18632/aging.103444. PubMed PMID: 32652517.

552. Lopez-Mejias R, Genre F, Remuzgo-Martinez S, Gonzalez-Juanatey C, Robustillo-Villarino M, Llorca J, et al. Influence of elevated-CRP level-related polymorphisms in non-rheumatic Caucasians on the risk of subclinical atherosclerosis and cardiovascular disease in rheumatoid arthritis. Sci Rep (2016) 6:31979. Epub 2016/08/19. doi: 10.1038/srep31979. PubMed PMID: 27534721; PubMed Central PMCID: PMCPMC4989194.

553. Losappio V, Franzin R, Infante B, Godeas G, Gesualdo L, Fersini A, et al. Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay Between Innate and Adaptive Immune Dysfunction. Int J Mol Sci (2020) 21(10). Epub 2020/05/16. doi: 10.3390/ijms21103422. PubMed PMID: 32408613; PubMed Central PMCID: PMCPMC7279398.

554. Lu M, Sun XL, Qiao C, Liu Y, Ding JH, Hu G. Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging (2014) 35(2):421-30. Epub 2013/09/18. doi: 10.1016/j.neurobiolaging.2013.08.015. PubMed PMID: 24041971.

555. Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, et al. Mitochondrial Stress-Initiated Aberrant Activation of the NLRP3 Inflammasome Regulates the Functional Deterioration of Hematopoietic Stem Cell Aging. Cell Rep (2019) 26(4):945-54 e4. Epub 2019/01/24. doi: 10.1016/j.celrep.2018.12.101. PubMed PMID: 30673616; PubMed Central PMCID: PMCPMC6371804.

556. Mao X, Fang W, Liu Q. An emerging role of Alu RNA in geographic atrophy pathogenesis: the implication for novel therapeutic strategies. Discov Med (2016) 22(123):337-49. Epub 2017/02/02. PubMed PMID: 28147216.

557. Marin-Aguilar F, Castejon-Vega B, Alcocer-Gomez E, Lendines-Cordero D, Cooper MA, de la Cruz P, et al. NLRP3 Inflammasome Inhibition by MCC950 in Aged Mice Improves Health via Enhanced Autophagy and PPARalpha Activity. J Gerontol A Biol Sci Med Sci (2020) 75(8):1457-64. Epub 2019/10/12. doi: 10.1093/gerona/glz239. PubMed PMID: 31603987.

558. Marin-Aguilar F, Lechuga-Vieco AV, Alcocer-Gomez E, Castejon-Vega B, Lucas J, Garrido C, et al. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell (2020) 19(1):e13050. Epub 2019/10/19. doi: 10.1111/acel.13050. PubMed PMID: 31625260; PubMed Central PMCID: PMCPMC6974709.

559. Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med (2016) 8(3):208-31. Epub 2016/02/26. doi: 10.15252/emmm.201505613. PubMed PMID: 26912740; PubMed Central PMCID: PMCPMC4772957.

560. Marneros AG. Effects of chronically increased VEGF-A on the aging heart. FASEB J (2018) 32(3):1550-65. Epub 2017/11/18. doi: 10.1096/fj.201700761RR. PubMed PMID: 29146733.

561. Mastrocola R, Aragno M, Alloatti G, Collino M, Penna C, Pagliaro P. Metaflammation: Tissue-Specific Alterations of the NLRP3 Inflammasome Platform in Metabolic Syndrome. Curr Med Chem (2018) 25(11):1294-310. Epub 2017/04/14. doi: 10.2174/0929867324666170407123522. PubMed PMID: 28403789.

562. Matzkin ME, Valchi P, Riviere E, Rossi SP, Tavalieri YE, Munoz de Toro MM, et al. Aging in the Syrian hamster testis: Inflammatory-oxidative status and the impact of photoperiod. Exp Gerontol (2019) 124:110649. Epub 2019/07/06. doi: 10.1016/j.exger.2019.110649. PubMed PMID: 31276778.

563. McBride MJ, Foley KP, D’Souza DM, Li YE, Lau TC, Hawke TJ, et al. The NLRP3 inflammasome contributes to sarcopenia and lower muscle glycolytic potential in old mice. Am J Physiol Endocrinol Metab (2017) 313(2):E222-E32. Epub 2017/05/26. doi: 10.1152/ajpendo.00060.2017. PubMed PMID: 28536183; PubMed Central PMCID: PMCPMC5582883.

564. Mejias-Pena Y, Estebanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, et al. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany NY) (2017) 9(2):408-18. Epub 2017/02/06. doi: 10.18632/aging.101167. PubMed PMID: 28160545; PubMed Central PMCID: PMCPMC5361672.

565. Meng XF, Tan L, Tan MS, Jiang T, Tan CC, Li MM, et al. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflammation (2014) 11:212. Epub 2014/12/18. doi: 10.1186/s12974-014-0212-5. PubMed PMID: 25516224; PubMed Central PMCID: PMCPMC4275944.

566. Mirzaei F, Khazaei M, Komaki A, Amiri I, Jalili C. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-beta induced toxicity and high-fat diet fed rat. Food Chem Toxicol (2018) 118:68-83. Epub 2018/05/08. doi: 10.1016/j.fct.2018.04.064. PubMed PMID: 29729307.

567. Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol (2018). Epub 2018/04/24. doi: 10.1016/j.vph.2018.04.006. PubMed PMID: 29684642.

568. Mog B, Asase C, Chaplin A, Gao H, Rajagopalan S, Maiseyeu A. Nano-Antagonist Alleviates Inflammation and Allows for MRI of Atherosclerosis. Nanotheranostics (2019) 3(4):342-55. Epub 2019/11/15. doi: 10.7150/ntno.37391. PubMed PMID: 31723548; PubMed Central PMCID: PMCPMC6838142.

569. Monnerat G, Alarcon ML, Vasconcellos LR, Hochman-Mendez C, Brasil G, Bassani RA, et al. Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat Commun (2016) 7:13344. Epub 2016/11/25. doi: 10.1038/ncomms13344. PubMed PMID: 27882934; PubMed Central PMCID: PMCPMC5123037.

570. Mu WC, Ohkubo R, Widjaja A, Chen D. The mitochondrial metabolic checkpoint in stem cell aging and rejuvenation. Mech Ageing Dev (2020) 188:111254. Epub 2020/04/29. doi: 10.1016/j.mad.2020.111254. PubMed PMID: 32343979.

571. Murphy AM, Smith CE, Murphy LM, Follis JL, Tanaka T, Richardson K, et al. Potential Interplay between Dietary Saturated Fats and Genetic Variants of the NLRP3 Inflammasome to Modulate Insulin Resistance and Diabetes Risk: Insights from a Meta-Analysis of 19 005 Individuals. Mol Nutr Food Res (2019) 63(22):e1900226. Epub 2019/08/23. doi: 10.1002/mnfr.201900226. PubMed PMID: 31432628; PubMed Central PMCID: PMCPMC6864231.

572. Nakamura K, Kawakami T, Yamamoto N, Tomizawa M, Fujiwara T, Ishii T, et al. Activation of the NLRP3 inflammasome by cellular labile iron. Exp Hematol (2016) 44(2):116-24. Epub 2015/11/19. doi: 10.1016/j.exphem.2015.11.002. PubMed PMID: 26577567.

573. Neog MK, Chung H, Jang MJ, Kim DJ, Lee SH, Kim KS. Effect of Aging on Taurine Transporter (TauT) Expression in the Mouse Brain Cortex. Adv Exp Med Biol (2019) 1155:3-11. Epub 2019/08/31. doi: 10.1007/978-981-13-8023-5_1. PubMed PMID: 31468381.

574. Overley-Adamson B, Artlett CM, Stephens C, Sassi-Gaha S, Weis RD, Thacker JD. Targeting the unfolded protein response, XBP1, and the NLRP3 inflammasome in fibrosis and cancer. Cancer Biol Ther (2014) 15(4):452-62. Epub 2014/02/06. doi: 10.4161/cbt.27820. PubMed PMID: 24496016; PubMed Central PMCID: PMCPMC3979823.

575. Paget C, Chow MT, Gherardin NA, Beavis PA, Uldrich AP, Duret H, et al. CD3bright signals on gammadelta T cells identify IL-17A-producing Vgamma6Vdelta1+ T cells. Immunol Cell Biol (2015) 93(2):198-212. Epub 2014/11/12. doi: 10.1038/icb.2014.94. PubMed PMID: 25385067.

576. Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, et al. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation (2018) 15(1):29. Epub 2018/02/02. doi: 10.1186/s12974-018-1073-0. PubMed PMID: 29386025; PubMed Central PMCID: PMCPMC5791181.

577. Panicker N, Kanthasamy A, Kanthasamy AG. Fyn amplifies NLRP3 inflammasome signaling in Parkinson’s disease. Aging (Albany NY) (2019) 11(16):5871-3. Epub 2019/08/28. doi: 10.18632/aging.102210. PubMed PMID: 31454793; PubMed Central PMCID: PMCPMC6738402.

578. Paoletti A, Allouch A, Caillet M, Saidi H, Subra F, Nardacci R, et al. HIV-1 Envelope Overcomes NLRP3-Mediated Inhibition of F-Actin Polymerization for Viral Entry. Cell Rep (2019) 28(13):3381-94 e7. Epub 2019/09/26. doi: 10.1016/j.celrep.2019.02.095. PubMed PMID: 31553908.

579. Qin YY, Li M, Feng X, Wang J, Cao L, Shen XK, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med (2017) 104:333-45. Epub 2017/01/31. doi: 10.1016/j.freeradbiomed.2017.01.034. PubMed PMID: 28132925.

580. Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am J Transl Res (2019) 11(2):655-68. Epub 2019/03/23. PubMed PMID: 30899369; PubMed Central PMCID: PMCPMC6413292.

581. Rashad S, Niizuma K, Sato-Maeda M, Fujimura M, Mansour A, Endo H, et al. Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res (2018) 1699:54-68. Epub 2018/07/08. doi: 10.1016/j.brainres.2018.06.029. PubMed PMID: 29981290.

582. Ratajczak MZ, Bujko K, Cymer M, Thapa A, Adamiak M, Ratajczak J, et al. The Nlrp3 inflammasome as a “rising star” in studies of normal and malignant hematopoiesis. Leukemia (2020) 34(6):1512-23. Epub 2020/04/22. doi: 10.1038/s41375-020-0827-8. PubMed PMID: 32313108; PubMed Central PMCID: PMCPMC7266743.

583. Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, et al. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY) (2020) 12(11):11025-41. Epub 2020/06/10. doi: 10.18632/aging.103314. PubMed PMID: 32516127.

584. Rodriguez-Luna A, Avila-Roman J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs (2019) 17(8). Epub 2019/08/04. doi: 10.3390/md17080451. PubMed PMID: 31374828; PubMed Central PMCID: PMCPMC6722862.

585. Roncero-Ramos I, Rangel-Zuniga OA, Lopez-Moreno J, Alcala-Diaz JF, Perez-Martinez P, Jimenez-Lucena R, et al. Mediterranean Diet, Glucose Homeostasis, and Inflammasome Genetic Variants: The CORDIOPREV Study. Mol Nutr Food Res (2018) 62(9):e1700960. Epub 2018/03/25. doi: 10.1002/mnfr.201700960. PubMed PMID: 29573224.

586. Ruan B, Wang R, Yang YJ, Wang DF, Wang JW, Zhang CC, et al. [Improved effects of saponins from Panax japonicus on decline of cognitive function in natural aging rats via NLRP3 inflammasome pathway]. Zhongguo Zhong Yao Za Zhi (2019) 44(2):344-9. Epub 2019/04/17. doi: 10.19540/j.cnki.cjcmm.20180921.001. PubMed PMID: 30989956.

587. Ruan Y, Qiu X, Lv YD, Dong D, Wu XJ, Zhu J, et al. Kainic acid Induces production and aggregation of amyloid beta-protein and memory deficits by activating inflammasomes in NLRP3- and NF-kappaB-stimulated pathways. Aging (Albany NY) (2019) 11(11):3795-810. Epub 2019/06/12. doi: 10.18632/aging.102017. PubMed PMID: 31182681; PubMed Central PMCID: PMCPMC6594814.

588. Sabui S, Skupsky J, Kapadia R, Cogburn K, Lambrecht NW, Agrawal A, et al. Tamoxifen-induced, intestinal-specific deletion of Slc5a6 in adult mice leads to spontaneous inflammation: involvement of NF-kappaB, NLRP3, and gut microbiota. Am J Physiol Gastrointest Liver Physiol (2019) 317(4):G518-G30. Epub 2019/08/02. doi: 10.1152/ajpgi.00172.2019. PubMed PMID: 31369292; PubMed Central PMCID: PMCPMC6842991.

589. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) (2012) 4(3):166-75. Epub 2012/03/14. doi: 10.18632/aging.100444. PubMed PMID: 22411934; PubMed Central PMCID: PMCPMC3348477.

590. Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci (2012) 69(18):2999-3013. Epub 2012/03/27. doi: 10.1007/s00018-012-0962-0. PubMed PMID: 22446749.

591. SantaCruz-Calvo S, SantaCruz-Calvo L, Nikolajczyk BS. Commentary on Camell et al., Aging Induces Nlrp3 Inflammasome Dependent Adipose B Cell Expansion to Impair Metabolic Homeostasis. Immunometabolism (2020) 2(2). Epub 2020/04/16. doi: 10.20900/immunometab20200011. PubMed PMID: 32292596; PubMed Central PMCID: PMCPMC7156147.

592. Santana PT, Martel J, Lai HC, Perfettini JL, Kanellopoulos JM, Young JD, et al. Is the inflammasome relevant for epithelial cell function? Microbes Infect (2016) 18(2):93-101. Epub 2015/11/08. doi: 10.1016/j.micinf.2015.10.007. PubMed PMID: 26546965.

593. Sayed RKA, Fernandez-Ortiz M, Diaz-Casado ME, Aranda-Martinez P, Fernandez-Martinez J, Guerra-Librero A, et al. Lack of NLRP3 Inflammasome Activation Reduces Age-Dependent Sarcopenia and Mitochondrial Dysfunction, Favoring the Prophylactic Effect of Melatonin. J Gerontol A Biol Sci Med Sci (2019) 74(11):1699-708. Epub 2019/03/15. doi: 10.1093/gerona/glz079. PubMed PMID: 30869745.

594. Aftabizadeh M, Tatarek-Nossol M, Andreetto E, El Bounkari O, Kipp M, Beyer C, et al. Blocking Inflammasome Activation Caused by beta-Amyloid Peptide (Abeta) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chem Neurosci (2019) 10(8):3703-17. Epub 2019/07/12. doi: 10.1021/acschemneuro.9b00260. PubMed PMID: 31295403.

595. Agyemang AF, Harrison SR, Siegel RM, McDermott MF. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. Semin Immunopathol (2015) 37(4):335-47. Epub 2015/05/23. doi: 10.1007/s00281-015-0496-2. PubMed PMID: 25994946.

596. Ahn H, Kang SG, Yoon SI, Ko HJ, Kim PH, Hong EJ, et al. Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci Rep (2017) 7(1):12409. Epub 2017/10/01. doi: 10.1038/s41598-017-12635-6. PubMed PMID: 28963531; PubMed Central PMCID: PMCPMC5622101.

597. Akira S, Misawa T, Satoh T, Saitoh T. Macrophages control innate inflammation. Diabetes Obes Metab (2013) 15 Suppl 3:10-8. Epub 2013/09/18. doi: 10.1111/dom.12151. PubMed PMID: 24003916.

598. Anders LC, Yeo H, Kaelin BR, Lang AL, Bushau AM, Douglas AN, et al. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol (2016) 311:34-41. Epub 2016/10/26. doi: 10.1016/j.taap.2016.09.026. PubMed PMID: 27693805; PubMed Central PMCID: PMCPMC5079761.

599. Asimakopoulou A, Engel KM, Gassler N, Bracht T, Sitek B, Buhl EM, et al. Deletion of Perilipin 5 Protects Against Hepatic Injury in Nonalcoholic Fatty Liver Disease via Missing Inflammasome Activation. Cells (2020) 9(6). Epub 2020/06/03. doi: 10.3390/cells9061346. PubMed PMID: 32481590.

600. Baldwin AG, Tapia VS, Swanton T, White CS, Beswick JA, Brough D, et al. Design, Synthesis and Evaluation of Oxazaborine Inhibitors of the NLRP3 Inflammasome. ChemMedChem (2018) 13(4):312-20. Epub 2018/01/14. doi: 10.1002/cmdc.201700731. PubMed PMID: 29331080; PubMed Central PMCID: PMCPMC5947144.

601. Barra NG, Henriksbo BD, Anhe FF, Schertzer JD. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J (2020) 477(6):1089-107. Epub 2020/03/24. doi: 10.1042/BCJ20190472. PubMed PMID: 32202638.

602. Basiorka AA, McGraw KL, Abbas-Aghababazadeh F, McLemore AF, Vincelette ND, Ward GA, et al. Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study. Lancet Haematol (2018) 5(9):e393-e402. Epub 2018/08/04. doi: 10.1016/S2352-3026(18)30109-1. PubMed PMID: 30072146; PubMed Central PMCID: PMCPMC6505461.

603. Benetti E, Chiazza F, Patel NS, Collino M. The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm (2013) 2013:678627. Epub 2013/07/12. doi: 10.1155/2013/678627. PubMed PMID: 23843683; PubMed Central PMCID: PMCPMC3697790.

604. Bhattacharjee CK, Paine SK, Mahanta J, Borphukan S, Borah PK. Expression of inflammasome complex mRNA and its targeted microRNA in type 2 diabetes mellitus: A possible predictor of the severity of diabetic nephropathy. J Diabetes (2019) 11(1):90-2. Epub 2018/08/29. doi: 10.1111/1753-0407.12845. PubMed PMID: 30151904.

605. Birnbaum Y, Bajaj M, Yang HC, Ye Y. Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes. Cardiovasc Drugs Ther (2018) 32(2):135-45. Epub 2018/03/07. doi: 10.1007/s10557-018-6778-x. PubMed PMID: 29508169.

606. Birnbaum Y, Tran D, Bajaj M, Ye Y. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic Res Cardiol (2019) 114(5):35. Epub 2019/08/08. doi: 10.1007/s00395-019-0743-0. PubMed PMID: 31388770.

607. Bitto A, Altavilla D, Pizzino G, Irrera N, Pallio G, Colonna MR, et al. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice. Br J Pharmacol (2014) 171(9):2300-7. Epub 2013/12/18. doi: 10.1111/bph.12557. PubMed PMID: 24329484; PubMed Central PMCID: PMCPMC3997271.

608. Buckner T, Fan R, Kim Y, Kim J, Chung S. Annatto Tocotrienol Attenuates NLRP3 Inflammasome Activation in Macrophages. Curr Dev Nutr (2017) 1(6):e000760. Epub 2018/06/30. doi: 10.3945/cdn.117.000760. PubMed PMID: 29955706; PubMed Central PMCID: PMCPMC5998354.

609. Byrne NJ, Soni S, Takahara S, Ferdaoussi M, Al Batran R, Darwesh AM, et al. Chronically Elevating Circulating Ketones Can Reduce Cardiac Inflammation and Blunt the Development of Heart Failure. Circ Heart Fail (2020) 13(6):e006573. Epub 2020/06/05. doi: 10.1161/CIRCHEARTFAILURE.119.006573. PubMed PMID: 32493060.

610. Cannito S, Morello E, Bocca C, Foglia B, Benetti E, Novo E, et al. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS One (2017) 12(3):e0172575. Epub 2017/03/02. doi: 10.1371/journal.pone.0172575. PubMed PMID: 28249038; PubMed Central PMCID: PMCPMC5331985.

611. Castejon-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci (2020) 21(14). Epub 2020/07/12. doi: 10.3390/ijms21144829. PubMed PMID: 32650482.

612. Catano Canizales YG, Uresti Rivera EE, Garcia Jacobo RE, Portales Perez DP, Yadira B, Rodriguez Rivera JG, et al. Increased Levels of AIM2 and Circulating Mitochondrial DNA in Type 2 Diabetes. Iran J Immunol (2018) 15(2):142-55. Epub 2018/06/28. doi: IJIv15i2A7. PubMed PMID: 29947343.

613. Chen C, Ma X, Yang C, Nie W, Zhang J, Li H, et al. Hypoxia potentiates LPS-induced inflammatory response and increases cell death by promoting NLRP3 inflammasome activation in pancreatic beta cells. Biochem Biophys Res Commun (2018) 495(4):2512-8. Epub 2017/12/27. doi: 10.1016/j.bbrc.2017.12.134. PubMed PMID: 29278702.

614. Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y, Ye Y. Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther (2020) 34(4):443-61. Epub 2020/04/27. doi: 10.1007/s10557-020-06978-y. PubMed PMID: 32335797.

615. Chen K, Feng L, Hu W, Chen J, Wang X, Wang L, et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J (2019) 33(3):4571-85. Epub 2018/12/21. doi: 10.1096/fj.201801749RRR. PubMed PMID: 30571313.

616. Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol (2013) 45(5):932-43. Epub 2013/02/26. doi: 10.1016/j.biocel.2013.02.009. PubMed PMID: 23434541.

617. Chen X, Zhou Y, Yu J. Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation. Mol Pharm (2019) 16(6):2690-9. Epub 2019/05/01. doi: 10.1021/acs.molpharmaceut.9b00246. PubMed PMID: 31038962.

618. Chen Y, Kidd J, Bhat OM, Yuan X, Hong J, He X, et al. Suppression of Glucagon-Like Peptide-1 Release by Inhibition of Intestinal NLRP3 Inflammasome Activation in Asc(-/-) and Nlrp3(-/-) Mice. Front Physiol (2019) 10:1213. Epub 2019/10/22. doi: 10.3389/fphys.2019.01213. PubMed PMID: 31632284; PubMed Central PMCID: PMCPMC6779826.

619. Chen Y, Wang L, Pitzer AL, Li X, Li PL, Zhang Y. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med (Berl) (2016) 94(12):1335-47. Epub 2016/10/27. doi: 10.1007/s00109-016-1481-5. PubMed PMID: 27783111; PubMed Central PMCID: PMCPMC5512566.

620. Choi AJ, Ryter SW. Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cells (2014) 37(6):441-8. Epub 2014/05/23. doi: 10.14348/molcells.2014.0104. PubMed PMID: 24850149; PubMed Central PMCID: PMCPMC4086337.

621. Cocco M, Miglio G, Giorgis M, Garella D, Marini E, Costale A, et al. Design, Synthesis, and Evaluation of Acrylamide Derivatives as Direct NLRP3 Inflammasome Inhibitors. ChemMedChem (2016) 11(16):1790-803. Epub 2016/03/19. doi: 10.1002/cmdc.201600055. PubMed PMID: 26990578.

622. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med (2015) 21(3):248-55. Epub 2015/02/17. doi: 10.1038/nm.3806. PubMed PMID: 25686105; PubMed Central PMCID: PMCPMC4392179.

623. Collino M, Benetti E, Rogazzo M, Mastrocola R, Yaqoob MM, Aragno M, et al. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-delta agonism correlates with impaired NLRP3 inflammasome activation. Biochem Pharmacol (2013) 85(2):257-64. Epub 2012/10/30. doi: 10.1016/j.bcp.2012.10.014. PubMed PMID: 23103566.

624. Conley SM, Abais JM, Boini KM, Li PL. Inflammasome Activation in Chronic Glomerular Diseases. Curr Drug Targets (2017) 18(9):1019-29. Epub 2016/08/20. doi: 10.2174/1389450117666160817103435. PubMed PMID: 27538510; PubMed Central PMCID: PMCPMC5893309.

625. Cook GP, Savic S, Wittmann M, McDermott MF. The NLRP3 inflammasome, a target for therapy in diverse disease states. Eur J Immunol (2010) 40(3):631-4. Epub 2010/03/05. doi: 10.1002/eji.200940162. PubMed PMID: 20201018.

626. Coucha M, Mohamed IN, Elshaer SL, Mbata O, Bartasis ML, El-Remessy AB. High fat diet dysregulates microRNA-17-5p and triggers retinal inflammation: Role of endoplasmic-reticulum-stress. World J Diabetes (2017) 8(2):56-65. Epub 2017/03/08. doi: 10.4239/wjd.v8.i2.56. PubMed PMID: 28265343; PubMed Central PMCID: PMCPMC5320749.

627. Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ (2012) 19(1):5-12. Epub 2011/11/15. doi: 10.1038/cdd.2011.159. PubMed PMID: 22075986; PubMed Central PMCID: PMCPMC3252823.

628. Dai J, Chen H, Chai Y. Advanced Glycation End Products (AGEs) Induce Apoptosis of Fibroblasts by Activation of NLRP3 Inflammasome via Reactive Oxygen Species (ROS) Signaling Pathway. Med Sci Monit (2019) 25:7499-508. Epub 2019/10/07. doi: 10.12659/MSM.915806. PubMed PMID: 31587010; PubMed Central PMCID: PMCPMC6792499.

629. Dai J, Zhang X, Li L, Chen H, Chai Y. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages. Cell Physiol Biochem (2017) 43(1):247-56. Epub 2017/08/31. doi: 10.1159/000480367. PubMed PMID: 28854426.

630. Dai X, Okon I, Liu Z, Bedarida T, Wang Q, Ramprasath T, et al. Ablation of Neuropilin 1 in Myeloid Cells Exacerbates High-Fat Diet-Induced Insulin Resistance Through Nlrp3 Inflammasome In Vivo. Diabetes (2017) 66(9):2424-35. Epub 2017/07/01. doi: 10.2337/db17-0132. PubMed PMID: 28659345; PubMed Central PMCID: PMCPMC5566301.

631. Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, et al. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes (2014) 63(6):1966-77. Epub 2014/02/13. doi: 10.2337/db13-1511. PubMed PMID: 24520123.

632. de Moraes Rodrigues J, Souza de Lima D, Leal VNC, Bosco AA, Sandrim V, Pontillo A. Gain-of-function SNPs in NLRP3 and IL1B genes confer protection against obesity and T2D: undiscovered role of inflammasome genetics in metabolic homeostasis? Endocrine (2018) 60(2):368-71. Epub 2017/06/22. doi: 10.1007/s12020-017-1343-0. PubMed PMID: 28634744.

633. De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol (2011) 32(8):373-9. Epub 2011/07/08. doi: 10.1016/ PubMed PMID: 21733753; PubMed Central PMCID: PMCPMC3151541.

634. Demidowich AP, Davis AI, Dedhia N, Yanovski JA. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation. Med Hypotheses (2016) 92:67-73. Epub 2016/06/01. doi: 10.1016/j.mehy.2016.04.039. PubMed PMID: 27241260; PubMed Central PMCID: PMCPMC4890167.

635. Dowling JK, O’Neill LA. Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol (2012) 47(5):424-43. Epub 2012/06/12. doi: 10.3109/10409238.2012.694844. PubMed PMID: 22681257.

636. Dror E, Dalmas E, Meier DT, Wueest S, Thevenet J, Thienel C, et al. Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol (2017) 18(3):283-92. Epub 2017/01/17. doi: 10.1038/ni.3659. PubMed PMID: 28092375.

637. Du P, Wang J, Han Y, Feng J. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 Axis Inhibits the Hippocampal Inflammatory Response in T2DM With OSA. Front Cell Neurosci (2020) 14:97. Epub 2020/06/02. doi: 10.3389/fncel.2020.00097. PubMed PMID: 32477065; PubMed Central PMCID: PMCPMC7235443.

638. Dunne A. Inflammasome activation: from inflammatory disease to infection. Biochem Soc Trans (2011) 39(2):669-73. Epub 2011/03/25. doi: 10.1042/BST0390669. PubMed PMID: 21428959.

639. Elshaer SL, Mohamed IN, Coucha M, Altantawi S, Eldahshan W, Bartasi ML, et al. Deletion of TXNIP Mitigates High-Fat Diet-Impaired Angiogenesis and Prevents Inflammation in a Mouse Model of Critical Limb Ischemia. Antioxidants (Basel) (2017) 6(3). Epub 2017/07/01. doi: 10.3390/antiox6030047. PubMed PMID: 28661427; PubMed Central PMCID: PMCPMC5618075.

640. Esser N, Legrand-Poels S, Piette J, Paquot N, Scheen AJ. [NLRP3 inflammasome and visceral adipose tissue]. Rev Med Liege (2014) 69 Spec No:57-61. Epub 2014/01/01. PubMed PMID: 25796800.

641. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract (2014) 105(2):141-50. Epub 2014/05/07. doi: 10.1016/j.diabres.2014.04.006. PubMed PMID: 24798950.

642. Faridi A, Sun Y, Mortimer M, Aranha RR, Nandakumar A, Li Y, et al. Graphene quantum dots rescue protein dysregulation of pancreatic beta-cells exposed to human islet amyloid polypeptide. Nano Res (2019) 12(11):2827-34. Epub 2019/11/07. doi: 10.1007/s12274-019-2520-7. PubMed PMID: 31695851; PubMed Central PMCID: PMCPMC6834229.

643. Fatima A, Connaughton RM, Weiser A, Murphy AM, O’Grada C, Ryan M, et al. Weighted Gene Co-Expression Network Analysis Identifies Gender Specific Modules and Hub Genes Related to Metabolism and Inflammation in Response to an Acute Lipid Challenge. Mol Nutr Food Res (2018) 62(2). Epub 2017/09/28. doi: 10.1002/mnfr.201700388. PubMed PMID: 28952191.

644. Fekete C, Vastagh C, Denes A, Hrabovszky E, Nyiri G, Kallo I, et al. Chronic Amyloid beta Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience (2019) 405:35-46. Epub 2018/03/10. doi: 10.1016/j.neuroscience.2018.02.046. PubMed PMID: 29522854.

645. Fender AC, Kleeschulte S, Stolte S, Leineweber K, Kamler M, Bode J, et al. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic Res Cardiol (2020) 115(2):10. Epub 2020/01/09. doi: 10.1007/s00395-019-0771-9. PubMed PMID: 31912235.

646. Ferreira NS, Bruder-Nascimento T, Pereira CA, Zanotto CZ, Prado DS, Silva JF, et al. NLRP3 Inflammasome and Mineralocorticoid Receptors Are Associated with Vascular Dysfunction in Type 2 Diabetes Mellitus. Cells (2019) 8(12). Epub 2019/12/11. doi: 10.3390/cells8121595. PubMed PMID: 31817997; PubMed Central PMCID: PMCPMC6952964.

647. Fusco R, Siracusa R, Genovese T, Cuzzocrea S, Di Paola R. Focus on the Role of NLRP3 Inflammasome in Diseases. Int J Mol Sci (2020) 21(12). Epub 2020/06/18. doi: 10.3390/ijms21124223. PubMed PMID: 32545788.

648. Gao J, Sang M, Zhang X, Zheng T, Pan J, Dai M, et al. Miro1-mediated mitochondrial dysfunction under high nutrient stress is linked to NOD-like receptor 3 (NLRP3)-dependent inflammatory responses in rat pancreatic beta cells. Free Radic Biol Med (2015) 89:322-32. Epub 2015/10/03. doi: 10.1016/j.freeradbiomed.2015.09.002. PubMed PMID: 26427885.

649. Gao L, Lu GT, Lu YY, Xiao WM, Mao WJ, Tong ZH, et al. Diabetes aggravates acute pancreatitis possibly via activation of NLRP3 inflammasome in db/db mice. Am J Transl Res (2018) 10(7):2015-25. Epub 2018/08/11. PubMed PMID: 30093939; PubMed Central PMCID: PMCPMC6079120.

650. Garcia-Hernandez AL, Munoz-Saavedra AE, Gonzalez-Alva P, Moreno-Fierros L, Llamosas-Hernandez FE, Cifuentes-Mendiola SE, et al. Upregulation of proteins of the NLRP3 inflammasome in patients with periodontitis and uncontrolled type 2 diabetes. Oral Dis (2019) 25(2):596-608. Epub 2018/11/14. doi: 10.1111/odi.13003. PubMed PMID: 30422379.

651. Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol (2017) 30(6):719-27. Epub 2017/09/22. doi: 10.1007/s40620-017-0432-8. PubMed PMID: 28933050.

652. Giuliani AL, Sarti AC, Falzoni S, Di Virgilio F. The P2X7 Receptor-Interleukin-1 Liaison. Front Pharmacol (2017) 8:123. Epub 2017/04/01. doi: 10.3389/fphar.2017.00123. PubMed PMID: 28360855; PubMed Central PMCID: PMCPMC5353276.

653. Goldbach-Mansky R. Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr Rheumatol Rep (2011) 13(2):123-31. Epub 2011/05/04. doi: 10.1007/s11926-011-0165-y. PubMed PMID: 21538043; PubMed Central PMCID: PMCPMC3195512.

654. Grant RW, Dixit VD. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front Immunol (2013) 4:50. Epub 2013/03/14. doi: 10.3389/fimmu.2013.00050. PubMed PMID: 23483669; PubMed Central PMCID: PMCPMC3592198.

655. Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, et al. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity (2016) 45(4):802-16. Epub 2016/10/21. doi: 10.1016/j.immuni.2016.09.008. PubMed PMID: 27692610.

656. Han SJ, Lovaszi M, Kim M, D’Agati V, Hasko G, Lee HT. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. FASEB J (2020) 34(4):5465-82. Epub 2020/02/23. doi: 10.1096/fj.201903287R. PubMed PMID: 32086866; PubMed Central PMCID: PMCPMC7136150.

657. Haneklaus M, Gerlic M, O’Neill LA, Masters SL. miR-223: infection, inflammation and cancer. J Intern Med (2013) 274(3):215-26. Epub 2013/06/19. doi: 10.1111/joim.12099. PubMed PMID: 23772809; PubMed Central PMCID: PMCPMC7166861.

658. Haneklaus M, O’Neil JD, Clark AR, Masters SL, O’Neill LAJ. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. J Biol Chem (2017) 292(17):6869-81. Epub 2017/03/18. doi: 10.1074/jbc.M116.772947. PubMed PMID: 28302726; PubMed Central PMCID: PMCPMC5409458.

659. Haneklaus M, O’Neill LA, Coll RC. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol (2013) 25(1):40-5. Epub 2013/01/12. doi: 10.1016/j.coi.2012.12.004. PubMed PMID: 23305783.

660. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun (2018) 9(1):2550. Epub 2018/07/01. doi: 10.1038/s41467-018-04947-6. PubMed PMID: 29959312; PubMed Central PMCID: PMCPMC6026158.

661. He L, Weber KJ, Schilling JD. Glutamine Modulates Macrophage Lipotoxicity. Nutrients (2016) 8(4):215. Epub 2016/04/15. doi: 10.3390/nu8040215. PubMed PMID: 27077881; PubMed Central PMCID: PMCPMC4848684.

662. Healy NP, Kirwan AM, McArdle MA, Holohan K, Nongonierma AB, Keane D, et al. A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasome-mediated inflammation and improving insulin signaling. Mol Nutr Food Res (2016) 60(11):2421-32. Epub 2016/07/09. doi: 10.1002/mnfr.201501054. PubMed PMID: 27390025.

663. Heller A, Jarvis K, Coffman SS. Association of Type 2 Diabetes with Submicron Titanium Dioxide Crystals in the Pancreas. Chem Res Toxicol (2018) 31(6):506-9. Epub 2018/05/25. doi: 10.1021/acs.chemrestox.8b00047. PubMed PMID: 29792697.

664. Henriksbo BD, Lau TC, Cavallari JF, Denou E, Chi W, Lally JS, et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes (2014) 63(11):3742-7. Epub 2014/06/12. doi: 10.2337/db13-1398. PubMed PMID: 24917577.

665. Henriksbo BD, Tamrakar AK, Xu J, Duggan BM, Cavallari JF, Phulka J, et al. Statins Promote Interleukin-1beta-Dependent Adipocyte Insulin Resistance Through Lower Prenylation, Not Cholesterol. Diabetes (2019) 68(7):1441-8. Epub 2019/04/24. doi: 10.2337/db18-0999. PubMed PMID: 31010959.

666. Hill JR, Coll RC, Sue N, Reid JC, Dou J, Holley CL, et al. Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors. ChemMedChem (2017) 12(17):1449-57. Epub 2017/07/14. doi: 10.1002/cmdc.201700270. PubMed PMID: 28703484.

667. Ho SC, Chang YH. Comparison of Inhibitory Capacities of 6-, 8- and 10-Gingerols/Shogaols on the Canonical NLRP3 Inflammasome-Mediated IL-1beta Secretion. Molecules (2018) 23(2). Epub 2018/02/22. doi: 10.3390/molecules23020466. PubMed PMID: 29466287; PubMed Central PMCID: PMCPMC6017621.

668. Hoffman HM, Wanderer AA. Inflammasome and IL-1beta-mediated disorders. Curr Allergy Asthma Rep (2010) 10(4):229-35. Epub 2010/04/29. doi: 10.1007/s11882-010-0109-z. PubMed PMID: 20425006; PubMed Central PMCID: PMCPMC2892083.

669. Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, et al. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol (2014) 96(6):1087-100. Epub 2014/09/12. doi: 10.1189/jlb.3A0114-005RR. PubMed PMID: 25210146.

670. Hong J, Li G, Zhang Q, Ritter J, Li W, Li PL. D-Ribose Induces Podocyte NLRP3 Inflammasome Activation and Glomerular Injury via AGEs/RAGE Pathway. Front Cell Dev Biol (2019) 7:259. Epub 2019/11/19. doi: 10.3389/fcell.2019.00259. PubMed PMID: 31737627; PubMed Central PMCID: PMCPMC6831643.

671. Hong P, Li FX, Gu RN, Fang YY, Lai LY, Wang YW, et al. Inhibition of NLRP3 Inflammasome Ameliorates Cerebral Ischemia-Reperfusion Injury in Diabetic Mice. Neural Plast (2018) 2018:9163521. Epub 2018/06/02. doi: 10.1155/2018/9163521. PubMed PMID: 29853850; PubMed Central PMCID: PMCPMC5941718.

672. Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev (2015) 21:26-41. Epub 2015/04/01. PubMed PMID: 25826329.

673. Hu TX, Zhang NN, Ruan Y, Tan QY, Wang J. Hydrogen sulfide modulates high glucose-induced NLRP3 inflammasome activation in 3T3-L1 adipocytes. Exp Ther Med (2020) 19(1):771-6. Epub 2019/12/31. doi: 10.3892/etm.2019.8242. PubMed PMID: 31885713; PubMed Central PMCID: PMCPMC6913324.

674. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med (2018) 10(4). Epub 2018/03/14. doi: 10.15252/emmm.201708689. PubMed PMID: 29531021; PubMed Central PMCID: PMCPMC5887903.

675. Iannantuoni F, Diaz-Morales N, Escribano-Lopez I, Sola E, Roldan-Torres I, Apostolova N, et al. Does Glycemic Control Modulate the Impairment of NLRP3 Inflammasome Activation in Type 2 Diabetes? Antioxid Redox Signal (2019) 30(2):232-40. Epub 2018/06/05. doi: 10.1089/ars.2018.7582. PubMed PMID: 29860862.

676. Jaeger M, Carvalho A, Cunha C, Plantinga TS, van de Veerdonk F, Puccetti M, et al. Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. Eur J Clin Microbiol Infect Dis (2016) 35(5):797-801. Epub 2016/03/10. doi: 10.1007/s10096-016-2600-5. PubMed PMID: 26951262; PubMed Central PMCID: PMCPMC4840230.

677. Janket SJ, Javaheri H, Ackerson LK, Ayilavarapu S, Meurman JH. Oral Infections, Metabolic Inflammation, Genetics, and Cardiometabolic Diseases. J Dent Res (2015) 94(9 Suppl):119S-27S. Epub 2015/04/05. doi: 10.1177/0022034515580795. PubMed PMID: 25840582.

678. Jeftic I, Jovicic N, Pantic J, Arsenijevic N, Lukic ML, Pejnovic N. Galectin-3 Ablation Enhances Liver Steatosis, but Attenuates Inflammation and IL-33-Dependent Fibrosis in Obesogenic Mouse Model of Nonalcoholic Steatohepatitis. Mol Med (2015) 21:453-65. Epub 2015/05/29. doi: 10.2119/molmed.2014.00178. PubMed PMID: 26018806; PubMed Central PMCID: PMCPMC4559528.

679. Jia KK, Zheng YJ, Zhang YX, Liu JH, Jiao RQ, Pan Y, et al. Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain. J Ethnopharmacol (2017) 209:219-29. Epub 2017/08/08. doi: 10.1016/j.jep.2017.08.004. PubMed PMID: 28782622.

680. Jia X, Qiu T, Yao X, Jiang L, Wang N, Wei S, et al. Arsenic induces hepatic insulin resistance via mtROS-NLRP3 inflammasome pathway. J Hazard Mater (2020) 399:123034. Epub 2020/06/17. doi: 10.1016/j.jhazmat.2020.123034. PubMed PMID: 32544768.

681. Jiang D, Chen S, Sun R, Zhang X, Wang D. The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic pathways. Cancer Lett (2018) 419:8-19. Epub 2018/01/18. doi: 10.1016/j.canlet.2018.01.034. PubMed PMID: 29339210.

682. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med (2017) 214(11):3219-38. Epub 2017/10/13. doi: 10.1084/jem.20171419. PubMed PMID: 29021150; PubMed Central PMCID: PMCPMC5679172.

683. Jiang S, Xiao H, Wu Z, Yang Z, Ding B, Jin Z, et al. NLRP3 sparks the Greek fire in the war against lipid-related diseases. Obes Rev (2020). Epub 2020/05/12. doi: 10.1111/obr.13045. PubMed PMID: 32390276.

684. Jiang T, Jiang D, Zhang L, Ding M, Zhou H. Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1. Mol Immunol (2019) 107:54-60. Epub 2019/01/21. doi: 10.1016/j.molimm.2019.01.006. PubMed PMID: 30660990.

685. Jitprasertwong P, Jaedicke KM, Nile CJ, Preshaw PM, Taylor JJ. Leptin enhances the secretion of interleukin (IL)-18, but not IL-1beta, from human monocytes via activation of caspase-1. Cytokine (2014) 65(2):222-30. Epub 2013/11/28. doi: 10.1016/j.cyto.2013.10.008. PubMed PMID: 24275551.

686. Jo SI, Bae JH, Kim SJ, Lee JM, Jeong JH, Moon JS. PF-04620110, a Potent Antidiabetic Agent, Suppresses Fatty Acid-Induced NLRP3 Inflammasome Activation in Macrophages. Diabetes Metab J (2019) 43(5):683-99. Epub 2019/11/07. doi: 10.4093/dmj.2019.0112. PubMed PMID: 31694081; PubMed Central PMCID: PMCPMC6834844.

687. Joung KH, Kim JM, Choung S, Lee JH, Kim HJ, Ku BJ. Association between IL-1beta and cardiovascular disease risk in patients with newly diagnosed, drug-naive type 2 diabetes mellitus: a cross-sectional study. Ann Transl Med (2020) 8(5):225. Epub 2020/04/21. doi: 10.21037/atm.2020.01.17. PubMed PMID: 32309372; PubMed Central PMCID: PMCPMC7154468.

688. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med (2013) 19(9):1132-40. Epub 2013/08/21. doi: 10.1038/nm.3265. PubMed PMID: 23955712; PubMed Central PMCID: PMCPMC4050982.

689. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem (2012) 287(43):36617-22. Epub 2012/09/06. doi: 10.1074/jbc.M112.407130. PubMed PMID: 22948162; PubMed Central PMCID: PMCPMC3476327.

690. Kammoun HL, Allen TL, Henstridge DC, Barre S, Coll RC, Lancaster GI, et al. Evidence against a role for NLRP3-driven islet inflammation in db/db mice. Mol Metab (2018) 10:66-73. Epub 2018/02/27. doi: 10.1016/j.molmet.2018.02.001. PubMed PMID: 29478918; PubMed Central PMCID: PMCPMC5985230.

691. Kang L, Yayi H, Fang Z, Bo Z, Zhongyuan X. Dexmedetomidine attenuates P2X4 and NLRP3 expression in the spine of rats with diabetic neuropathic pain. Acta Cir Bras (2019) 34(11):e201901105. Epub 2019/12/21. doi: 10.1590/s0102-865020190110000005. PubMed PMID: 31859818; PubMed Central PMCID: PMCPMC6917476.

692. Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1beta production via activation of the NF-kappaB and inflammasome pathways. Innate Immun (2014) 20(8):799-815. Epub 2013/11/13. doi: 10.1177/1753425913508593. PubMed PMID: 24217221.

693. Kim SM, Ha JS, Han AR, Cho SW, Yang SJ. Effects of alpha-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation. BMB Rep (2019) 52(10):613-8. Epub 2019/04/04. PubMed PMID: 30940325; PubMed Central PMCID: PMCPMC6827572.

694. Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol (2015) 308(9):F993-F1003. Epub 2015/02/05. doi: 10.1152/ajprenal.00637.2014. PubMed PMID: 25651569.

695. Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun (2020) 11(1):2127. Epub 2020/05/03. doi: 10.1038/s41467-020-15983-6. PubMed PMID: 32358544; PubMed Central PMCID: PMCPMC7195385.

696. Kim Y, Wang W, Okla M, Kang I, Moreau R, Chung S. Suppression of NLRP3 inflammasome by gamma-tocotrienol ameliorates type 2 diabetes. J Lipid Res (2016) 57(1):66-76. Epub 2015/12/03. doi: 10.1194/jlr.M062828. PubMed PMID: 26628639; PubMed Central PMCID: PMCPMC4689338.

697. Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans (2017) 45(4):979-85. Epub 2017/07/16. doi: 10.1042/BST20160465. PubMed PMID: 28710289.

698. Klen J, Goricar K, Janez A, Dolzan V. NLRP3 Inflammasome Polymorphism and Macrovascular Complications in Type 2 Diabetes Patients. J Diabetes Res (2015) 2015:616747. Epub 2015/08/15. doi: 10.1155/2015/616747. PubMed PMID: 26273672; PubMed Central PMCID: PMCPMC4530261.

699. Ko MS, Yun JY, Baek IJ, Jang JE, Hwang JJ, Lee SE, et al. Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy (2020):1-17. Epub 2020/05/14. doi: 10.1080/15548627.2020.1753002. PubMed PMID: 32400277.

700. Kong X, Lu AL, Yao XM, Hua Q, Li XY, Qin L, et al. Activation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage. Oxid Med Cell Longev (2017) 2017:9692546. Epub 2017/12/13. doi: 10.1155/2017/9692546. PubMed PMID: 29230270; PubMed Central PMCID: PMCPMC5694574.

701. Kousathana F, Georgitsi M, Lambadiari V, Giamarellos-Bourboulis EJ, Dimitriadis G, Mouktaroudi M. Defective production of interleukin-1 beta in patients with type 2 diabetes mellitus: Restoration by proper glycemic control. Cytokine (2017) 90:177-84. Epub 2016/12/06. doi: 10.1016/j.cyto.2016.11.009. PubMed PMID: 27918955.

702. Kulak K, Westermark GT, Papac-Milicevic N, Renstrom E, Blom AM, King BC. The human serum protein C4b-binding protein inhibits pancreatic IAPP-induced inflammasome activation. Diabetologia (2017) 60(8):1522-33. Epub 2017/05/14. doi: 10.1007/s00125-017-4286-3. PubMed PMID: 28500395; PubMed Central PMCID: PMCPMC5491568.

703. L’Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, et al. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res (2013) 54(11):2998-3008. Epub 2013/09/06. doi: 10.1194/jlr.M037861. PubMed PMID: 24006511; PubMed Central PMCID: PMCPMC3793604.

704. Lawlor KE, Vince JE. Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? Biochim Biophys Acta (2014) 1840(4):1433-40. Epub 2013/09/03. doi: 10.1016/j.bbagen.2013.08.014. PubMed PMID: 23994495.

705. Lazaridis LD, Pistiki A, Giamarellos-Bourboulis EJ, Georgitsi M, Damoraki G, Polymeros D, et al. Activation of NLRP3 Inflammasome in Inflammatory Bowel Disease: Differences Between Crohn’s Disease and Ulcerative Colitis. Dig Dis Sci (2017) 62(9):2348-56. Epub 2017/05/20. doi: 10.1007/s10620-017-4609-8. PubMed PMID: 28523573.

706. Lebeaupin C, Vallee D, Rousseau D, Patouraux S, Bonnafous S, Adam G, et al. Bax inhibitor-1 protects from nonalcoholic steatohepatitis by limiting inositol-requiring enzyme 1 alpha signaling in mice. Hepatology (2018) 68(2):515-32. Epub 2018/02/20. doi: 10.1002/hep.29847. PubMed PMID: 29457838.

707. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta (2014) 1842(3):446-62. Epub 2013/05/28. doi: 10.1016/j.bbadis.2013.05.017. PubMed PMID: 23707515; PubMed Central PMCID: PMCPMC3800253.

708. Lee HJ, Hong YS, Jun W, Yang SJ. Nicotinamide Riboside Ameliorates Hepatic Metaflammation by Modulating NLRP3 Inflammasome in a Rodent Model of Type 2 Diabetes. J Med Food (2015) 18(11):1207-13. Epub 2015/05/15. doi: 10.1089/jmf.2015.3439. PubMed PMID: 25974041.

709. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes (2013) 62(1):194-204. Epub 2012/10/23. doi: 10.2337/db12-0420. PubMed PMID: 23086037; PubMed Central PMCID: PMCPMC3526026.

710. Lee J, Wan J, Lee L, Peng C, Xie H, Lee C. Study of the NLRP3 inflammasome component genes and downstream cytokines in patients with type 2 diabetes mellitus with carotid atherosclerosis. Lipids Health Dis (2017) 16(1):217. Epub 2017/11/21. doi: 10.1186/s12944-017-0595-2. PubMed PMID: 29151018; PubMed Central PMCID: PMCPMC5694162.

711. Legrand-Poels S, Esser N, L’Homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol (2014) 92(1):131-41. Epub 2014/09/02. doi: 10.1016/j.bcp.2014.08.013. PubMed PMID: 25175736.

712. Lei XW, Li Q, Zhang JZ, Zhang YM, Liu Y, Yang KH. The Protective Roles of Folic Acid in Preventing Diabetic Retinopathy Are Potentially Associated with Suppressions on Angiogenesis, Inflammation, and Oxidative Stress. Ophthalmic Res (2019) 62(2):80-92. Epub 2019/04/25. doi: 10.1159/000499020. PubMed PMID: 31018207.

713. Lei Y, Devarapu SK, Motrapu M, Cohen CD, Lindenmeyer MT, Moll S, et al. Interleukin-1beta Inhibition for Chronic Kidney Disease in Obese Mice With Type 2 Diabetes. Front Immunol (2019) 10:1223. Epub 2019/06/14. doi: 10.3389/fimmu.2019.01223. PubMed PMID: 31191559; PubMed Central PMCID: PMCPMC6549251.

714. Lenart N, Brough D, Denes A. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab (2016) 36(10):1668-85. Epub 2016/08/04. doi: 10.1177/0271678X16662043. PubMed PMID: 27486046; PubMed Central PMCID: PMCPMC5076791.

715. Leng W, Ouyang X, Lei X, Wu M, Chen L, Wu Q, et al. The SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE(-/-) Mice. Mediators Inflamm (2016) 2016:6305735. Epub 2017/01/21. doi: 10.1155/2016/6305735. PubMed PMID: 28104929; PubMed Central PMCID: PMCPMC5220517.

716. Li DX, Wang CN, Wang Y, Ye CL, Jiang L, Zhu XY, et al. NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice. Behav Brain Res (2020) 391:112684. Epub 2020/05/27. doi: 10.1016/j.bbr.2020.112684. PubMed PMID: 32454054.

717. Li J, Liu Y, Liu B, Li F, Hu J, Wang Q, et al. Mechanisms of Aerobic Exercise Upregulating the Expression of Hippocampal Synaptic Plasticity-Associated Proteins in Diabetic Rats. Neural Plast (2019) 2019:7920540. Epub 2019/03/27. doi: 10.1155/2019/7920540. PubMed PMID: 30911292; PubMed Central PMCID: PMCPMC6398012.

718. Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, et al. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem (2013) 288(42):30094-104. Epub 2013/08/30. doi: 10.1074/jbc.M113.494286. PubMed PMID: 23986436; PubMed Central PMCID: PMCPMC3798478.

719. Avolio E, Pasqua T, Di Vito A, Fazzari G, Cardillo G, Alo R, et al. Role of Brain Neuroinflammatory Factors on Hypertension in the Spontaneously Hypertensive Rat. Neuroscience (2018) 375:158-68. Epub 2018/02/13. doi: 10.1016/j.neuroscience.2018.01.067. PubMed PMID: 29432887.

720. Bautista-Perez R, Perez-Mendez O, Cano-Martinez A, Pacheco U, Santamaria J, Rodriguez-Iturbe FRB, et al. The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin II-induced Hypertension. Int J Mol Sci (2020) 21(11). Epub 2020/06/11. doi: 10.3390/ijms21114041. PubMed PMID: 32516946; PubMed Central PMCID: PMCPMC7312644.

721. Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res (2017) 117:377-93. Epub 2017/01/18. doi: 10.1016/j.phrs.2017.01.010. PubMed PMID: 28093357.

722. Bringmann A, Hollborn M, Kohen L, Wiedemann P. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration. Mol Vis (2016) 22:1437-54. Epub 2016/12/30. PubMed PMID: 28031693; PubMed Central PMCID: PMCPMC5178186.

723. Brocca ME, Pietranera L, Meyer M, Lima A, Roig P, de Kloet ER, et al. Mineralocorticoid receptor associates with pro-inflammatory bias in the hippocampus of spontaneously hypertensive rats. J Neuroendocrinol (2017) 29(7). Epub 2017/05/20. doi: 10.1111/jne.12489. PubMed PMID: 28523794.

724. Buelvas-Jimenez N, Suarez-Useche RJ, Vielma-Guevara JR. NLRP3 inflammasome: A therapeutic option for kidney disease? Rev Salud Publica (Bogota) (2017) 19(1):118-22. Epub 2017/01/01. doi: 10.15446/rsap.v19n1.54415. PubMed PMID: 30137165.

725. Bugyei-Twum A, Abadeh A, Thai K, Zhang Y, Mitchell M, Kabir G, et al. Suppression of NLRP3 Inflammasome Activation Ameliorates Chronic Kidney Disease-Induced Cardiac Fibrosis and Diastolic Dysfunction. Sci Rep (2016) 6:39551. Epub 2016/12/22. doi: 10.1038/srep39551. PubMed PMID: 28000751; PubMed Central PMCID: PMCPMC5175152.

726. Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, et al. Salt-Responsive Metabolite, beta-Hydroxybutyrate, Attenuates Hypertension. Cell Rep (2018) 25(3):677-89 e4. Epub 2018/10/18. doi: 10.1016/j.celrep.2018.09.058. PubMed PMID: 30332647; PubMed Central PMCID: PMCPMC6542293.

727. Chen D, Xiong XQ, Zang YH, Tong Y, Zhou B, Chen Q, et al. BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death Dis (2017) 8(10):e3156. Epub 2017/10/27. doi: 10.1038/cddis.2017.567. PubMed PMID: 29072703; PubMed Central PMCID: PMCPMC5680929.

728. Chen H, Lu Y, Cao Z, Ma Q, Pi H, Fang Y, et al. Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells. Toxicol Lett (2016) 246:7-16. Epub 2016/01/26. doi: 10.1016/j.toxlet.2016.01.014. PubMed PMID: 26809137.

729. Chen TTW, Cheng PC, Chang KC, Cao JP, Feng JL, Chen CC, et al. Activation of the NLRP3 and AIM2 inflammasomes in a mouse model of Schistosoma mansoni infection. J Helminthol (2019) 94:e72. Epub 2019/08/16. doi: 10.1017/S0022149X19000622. PubMed PMID: 31412958.

730. Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of Nicotinic Acetylcholine alpha7 Receptor Attenuates Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Downregulating the NLRP3 Inflammasome. Front Pharmacol (2019) 10:128. Epub 2019/03/14. doi: 10.3389/fphar.2019.00128. PubMed PMID: 30863307; PubMed Central PMCID: PMCPMC6399137.

731. DeWolf SE, Shigeoka AA, Scheinok A, Kasimsetty SG, Welch AK, McKay DB. Expression of TLR2, NOD1, and NOD2 and the NLRP3 Inflammasome in Renal Tubular Epithelial Cells of Male versus Female Mice. Nephron (2017) 137(1):68-76. Epub 2017/06/15. doi: 10.1159/000456016. PubMed PMID: 28614830; PubMed Central PMCID: PMCPMC5599100.

732. Ding Z, Liu S, Wang X, Dai Y, Khaidakov M, Deng X, et al. LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res (2014) 103(4):619-28. Epub 2014/04/30. doi: 10.1093/cvr/cvu114. PubMed PMID: 24776598; PubMed Central PMCID: PMCPMC4200051.

733. Engin A. Endothelial Dysfunction in Obesity. Adv Exp Med Biol (2017) 960:345-79. Epub 2017/06/07. doi: 10.1007/978-3-319-48382-5_15. PubMed PMID: 28585207.

734. Ermer T, Eckardt KU, Aronson PS, Knauf F. Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens (2016) 25(4):363-71. Epub 2016/05/19. doi: 10.1097/MNH.0000000000000229. PubMed PMID: 27191349; PubMed Central PMCID: PMCPMC4891250.

735. Fanelli C, Arias SCA, Machado FG, Okuma JK, Malheiros D, Azevedo H, et al. Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model. Sci Rep (2017) 7(1):3192. Epub 2017/06/11. doi: 10.1038/s41598-017-02915-6. PubMed PMID: 28600543; PubMed Central PMCID: PMCPMC5466605.

736. Femmino S, Pagliaro P, Penna C. Obesity and Cardioprotection. Curr Med Chem (2020) 27(2):230-9. Epub 2019/03/26. doi: 10.2174/0929867326666190325094453. PubMed PMID: 30907304.

737. Fu C, Hao S, Liu Z, Xie L, Wu X, Wu X, et al. SOD2 ameliorates pulmonary hypertension in a murine model of sleep apnea via suppressing expression of NLRP3 in CD11b(+) cells. Respir Res (2020) 21(1):9. Epub 2020/01/10. doi: 10.1186/s12931-019-1270-0. PubMed PMID: 31915037; PubMed Central PMCID: PMCPMC6951024.

738. Gan W, Ren J, Li T, Lv S, Li C, Liu Z, et al. The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis (2018) 1864(1):1-10. Epub 2017/10/08. doi: 10.1016/j.bbadis.2017.10.001. PubMed PMID: 28986310.

739. Gao J, Xie Q, Wei T, Huang C, Zhou W, Shen W. Nebivolol improves obesity-induced vascular remodelling by suppressing NLRP3 activation. J Cardiovasc Pharmacol (2019). Epub 2019/07/16. doi: 10.1097/FJC.0000000000000667. PubMed PMID: 31306372.

740. Gong W, Mao S, Yu J, Song J, Jia Z, Huang S, et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am J Physiol Renal Physiol (2016) 310(10):F1081-8. Epub 2016/02/19. doi: 10.1152/ajprenal.00534.2015. PubMed PMID: 26887832.

741. Han Y, Sun HJ, Tong Y, Chen YZ, Ye C, Qiu Y, et al. Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFkappaB-mediated NLRP3 expression in spontaneously hypertensive rats. J Nutr Biochem (2019) 72:108212. Epub 2019/09/02. doi: 10.1016/j.jnutbio.2019.07.003. PubMed PMID: 31473513.

742. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature (2012) 482(7384):179-85. Epub 2012/02/03. doi: 10.1038/nature10809. PubMed PMID: 22297845; PubMed Central PMCID: PMCPMC3276682.

743. Hollborn M, Ackmann C, Kuhrt H, Doktor F, Kohen L, Wiedemann P, et al. Osmotic and hypoxic induction of the complement factor C9 in cultured human retinal pigment epithelial cells: Regulation of VEGF and NLRP3 expression. Mol Vis (2018) 24:518-35. Epub 2018/08/10. PubMed PMID: 30090015; PubMed Central PMCID: PMCPMC6066273.

744. Hu L, Zhang S, Ooi K, Wu X, Wu J, Cai J, et al. Microglia-Derived NLRP3 Activation Mediates the Pressor Effect of Prorenin in the Rostral Ventrolateral Medulla of Stress-Induced Hypertensive Rats. Neurosci Bull (2020) 36(5):475-92. Epub 2020/04/04. doi: 10.1007/s12264-020-00484-9. PubMed PMID: 32242284; PubMed Central PMCID: PMCPMC7186257.

745. Hu S, Xie H, Luo R, Feng P, Liu Q, Han M, et al. Inhibition of IL-1beta by Aliskiren Improved Renal AQP2 Expression and Urinary Concentration Defect in Ureteral Obstruction and Release. Front Physiol (2019) 10:1157. Epub 2019/10/02. doi: 10.3389/fphys.2019.01157. PubMed PMID: 31572210; PubMed Central PMCID: PMCPMC6753185.

746. Jo CH, Kim S, Park JS, Kim GH. Anti-Inflammatory Action of Sitagliptin and Linagliptin in Doxorubicin Nephropathy. Kidney Blood Press Res (2018) 43(3):987-99. Epub 2018/06/19. doi: 10.1159/000490688. PubMed PMID: 29913457.

747. Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y, et al. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J (2017) 31(4):1434-48. Epub 2016/12/23. doi: 10.1096/fj.201600906R. PubMed PMID: 28007783; PubMed Central PMCID: PMCPMC5349805.

748. Kang Y, Zhang G, Huang EC, Huang J, Cai J, Cai L, et al. Sulforaphane prevents right ventricular injury and reduces pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol (2020) 318(4):H853-H66. Epub 2020/02/29. doi: 10.1152/ajpheart.00321.2019. PubMed PMID: 32108526.

749. Kasimsetty SG, DeWolf SE, Shigeoka AA, McKay DB. Regulation of TLR2 and NLRP3 in primary murine renal tubular epithelial cells. Nephron Clin Pract (2014) 127(1-4):119-23. Epub 2014/10/25. doi: 10.1159/000363208. PubMed PMID: 25343834; PubMed Central PMCID: PMCPMC4896108.

750. Keenan RT. The biology of urate. Semin Arthritis Rheum (2020) 50(3S):S2-S10. Epub 2020/07/06. doi: 10.1016/j.semarthrit.2020.04.007. PubMed PMID: 32620198.

751. Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells (2019) 8(11). Epub 2019/11/07. doi: 10.3390/cells8111389. PubMed PMID: 31694192; PubMed Central PMCID: PMCPMC6912448.

752. Kosuru R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovasc Drugs Ther (2018) 32(2):147-63. Epub 2018/03/21. doi: 10.1007/s10557-018-6780-3. PubMed PMID: 29556862.

753. Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, et al. Anti-inflammatory Action of Statins in Cardiovascular Disease: the Role of Inflammasome and Toll-Like Receptor Pathways. Clin Rev Allergy Immunol (2020). Epub 2020/05/08. doi: 10.1007/s12016-020-08791-9. PubMed PMID: 32378144.

754. Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol (2016) 173(4):752-65. Epub 2015/06/24. doi: 10.1111/bph.13230. PubMed PMID: 26103560; PubMed Central PMCID: PMCPMC4742291.

755. Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res (2019) 115(4):776-87. Epub 2018/10/26. doi: 10.1093/cvr/cvy252. PubMed PMID: 30357309; PubMed Central PMCID: PMCPMC6432065.

756. Lee DW, Kim JS, Kim IY, Kim HS, Kim JY, Rhee H, et al. Catheter-based renal sympathetic denervation induces acute renal inflammation through activation of caspase-1 and NLRP3 inflammasome. Anatol J Cardiol (2019) 21(3):134-41. Epub 2019/03/02. doi: 10.14744/AnatolJCardiol.2018.62257. PubMed PMID: 30821713; PubMed Central PMCID: PMCPMC6457403.

757. Lee S, Suh GY, Ryter SW, Choi AM. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease. Am J Respir Cell Mol Biol (2016) 54(2):151-60. Epub 2015/09/30. doi: 10.1165/rcmb.2015-0231TR. PubMed PMID: 26418144; PubMed Central PMCID: PMCPMC4821045.

758. Li F, Jiang N, Zhu YT, Su WR, Zhuo YH. [Mechanism of microglia promoting retinal ganglion cell death in vitro]. Zhonghua Yan Ke Za Zhi (2020) 56(1):32-40. Epub 2020/01/16. doi: 10.3760/cma.j.issn.0412-4081.2020.01.010. PubMed PMID: 31937061.

759. Li H, Qian F, Liu H, Zhang Z. Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Med Sci Monit (2019) 25:8457-64. Epub 2019/11/11. doi: 10.12659/MSM.916667. PubMed PMID: 31707403; PubMed Central PMCID: PMCPMC6865250.

760. Li J, Teng X, Jin S, Dong J, Guo Q, Tian D, et al. Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens (2019) 37(8):1633-43. Epub 2019/05/07. doi: 10.1097/HJH.0000000000002101. PubMed PMID: 31058793.

761. Li R, Lu K, Wang Y, Chen M, Zhang F, Shen H, et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun (2017) 485(1):69-75. Epub 2017/02/17. doi: 10.1016/j.bbrc.2017.02.021. PubMed PMID: 28202417.

762. Li TH, Huang CC, Yang YY, Lee KC, Hsieh SL, Hsieh YC, et al. Thalidomide Improves the Intestinal Mucosal Injury and Suppresses Mesenteric Angiogenesis and Vasodilatation by Down-Regulating Inflammasomes-Related Cascades in Cirrhotic Rats. PLoS One (2016) 11(1):e0147212. Epub 2016/01/29. doi: 10.1371/journal.pone.0147212. PubMed PMID: 26820153; PubMed Central PMCID: PMCPMC4731147.

763. Lian D, Lai J, Wu Y, Wang L, Chen Y, Zhang Y, et al. Cathepsin B-Mediated NLRP3 Inflammasome Formation and Activation in Angiotensin II -Induced Hypertensive Mice: Role of Macrophage Digestion Dysfunction. Cell Physiol Biochem (2018) 50(4):1585-600. Epub 2018/10/26. doi: 10.1159/000494656. PubMed PMID: 30359991.

764. Ling L, Chen D, Tong Y, Zang YH, Ren XS, Zhou H, et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens (2018) 36(5):1104-14. Epub 2018/01/06. doi: 10.1097/HJH.0000000000001654. PubMed PMID: 29303830.

765. Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol (2018) 113(1):5. Epub 2017/12/11. doi: 10.1007/s00395-017-0663-9. PubMed PMID: 29224086.

766. Liu P, Huang G, Wei T, Gao J, Huang C, Sun M, et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis (2018) 1864(3):764-77. Epub 2017/12/27. doi: 10.1016/j.bbadis.2017.12.027. PubMed PMID: 29277324.

767. Liu P, Xie Q, Wei T, Chen Y, Chen H, Shen W. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochem Biophys Res Commun (2015) 468(1-2):319-25. Epub 2015/10/31. doi: 10.1016/j.bbrc.2015.10.105. PubMed PMID: 26514727.

768. Luo R, Kakizoe Y, Wang F, Fan X, Hu S, Yang T, et al. Deficiency of mPGES-1 exacerbates renal fibrosis and inflammation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol (2017) 312(1):F121-F33. Epub 2016/10/28. doi: 10.1152/ajprenal.00231.2016. PubMed PMID: 27784694; PubMed Central PMCID: PMCPMC6109695.

769. Matias ML, Romao M, Weel IC, Ribeiro VR, Nunes PR, Borges VT, et al. Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia. PLoS One (2015) 10(6):e0129095. Epub 2015/06/09. doi: 10.1371/journal.pone.0129095. PubMed PMID: 26053021; PubMed Central PMCID: PMCPMC4459873.

770. Matsushita N, Ishida N, Ibi M, Saito M, Takahashi M, Taniguchi S, et al. IL-1beta Plays an Important Role in Pressure Overload-Induced Atrial Fibrillation in Mice. Biol Pharm Bull (2019) 42(4):543-6. Epub 2019/04/02. doi: 10.1248/bpb.b18-00363. PubMed PMID: 30930414.

771. Messerschmidt L, Fischer S, Wiedemann P, Bringmann A, Hollborn M. Osmotic induction of cyclooxygenase-2 in RPE cells: Stimulation of inflammasome activation. Mol Vis (2019) 25:329-44. Epub 2019/07/26. PubMed PMID: 31341381; PubMed Central PMCID: PMCPMC6610242.

772. Milagres T, Garcia-Arroyo FE, Lanaspa MA, Garcia G, Ishimoto T, Andres-Hernando A, et al. Rehydration with fructose worsens dehydration-induced renal damage. BMC Nephrol (2018) 19(1):180. Epub 2018/07/15. doi: 10.1186/s12882-018-0963-9. PubMed PMID: 30005632; PubMed Central PMCID: PMCPMC6045876.

773. Mohamed IN, Hafez SS, Fairaq A, Ergul A, Imig JD, El-Remessy AB. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia (2014) 57(2):413-23. Epub 2013/11/10. doi: 10.1007/s00125-013-3101-z. PubMed PMID: 24201577; PubMed Central PMCID: PMCPMC3947289.

774. Mooney JJ, Brady RO. Lithium + Colchicine: A Potential Strategy to Reduce Pro-inflammatory Effects of Lithium Treatment. J Clin Psychopharmacol (2018) 38(1):80-5. Epub 2017/12/13. doi: 10.1097/JCP.0000000000000830. PubMed PMID: 29232311.

775. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun (2016) 7:10274. Epub 2016/01/29. doi: 10.1038/ncomms10274. PubMed PMID: 26817517; PubMed Central PMCID: PMCPMC4738349.

776. Naz Villalba E, Gomez de la Fuente E, Caro Gutierrez D, Pinedo Moraleda F, Yanguela Rodilla J, Mazagatos Angulo D, et al. Muckle-Wells Syndrome: A Case Report with an NLRP3 T348M Mutation. Pediatr Dermatol (2016) 33(5):e311-4. Epub 2016/07/21. doi: 10.1111/pde.12905. PubMed PMID: 27435956.

777. Oh NH, Han JW, Shim DW, Sim EJ, Koppula S, Kwak SB, et al. Anti-inflammatory properties of Morus bombycis Koidzumi via inhibiting IFN-beta signaling and NLRP3 inflammasome activation. J Ethnopharmacol (2015) 176:424-8. Epub 2015/11/17. doi: 10.1016/j.jep.2015.11.022. PubMed PMID: 26571084.

778. Pasqua T, Pagliaro P, Rocca C, Angelone T, Penna C. Role of NLRP-3 Inflammasome in Hypertension: A Potential Therapeutic Target. Curr Pharm Biotechnol (2018) 19(9):708-14. Epub 2018/08/10. doi: 10.2174/1389201019666180808162011. PubMed PMID: 30091406.

779. Prager P, Hollborn M, Steffen A, Wiedemann P, Kohen L, Bringmann A. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells. PLoS One (2016) 11(10):e0165653. Epub 2016/10/28. doi: 10.1371/journal.pone.0165653. PubMed PMID: 27788256; PubMed Central PMCID: PMCPMC5082949.

780. Pronin A, Pham D, An W, Dvoriantchikova G, Reshetnikova G, Qiao J, et al. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Front Mol Neurosci (2019) 12:36. Epub 2019/04/02. doi: 10.3389/fnmol.2019.00036. PubMed PMID: 30930743; PubMed Central PMCID: PMCPMC6425693.

781. Qi J, Yu XJ, Shi XL, Gao HL, Yi QY, Tan H, et al. NF-kappaB Blockade in Hypothalamic Paraventricular Nucleus Inhibits High-Salt-Induced Hypertension Through NLRP3 and Caspase-1. Cardiovasc Toxicol (2016) 16(4):345-54. Epub 2015/10/07. doi: 10.1007/s12012-015-9344-9. PubMed PMID: 26438340.

782. Qi J, Zhao XF, Yu XJ, Yi QY, Shi XL, Tan H, et al. Targeting Interleukin-1 beta to Suppress Sympathoexcitation in Hypothalamic Paraventricular Nucleus in Dahl Salt-Sensitive Hypertensive Rats. Cardiovasc Toxicol (2016) 16(3):298-306. Epub 2015/08/26. doi: 10.1007/s12012-015-9338-7. PubMed PMID: 26304161.

783. Qin Q, Lin N, Huang H, Zhang X, Cao X, Wang Y, et al. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats. Diabetes Metab Syndr Obes (2019) 12:1091-103. Epub 2019/08/03. doi: 10.2147/DMSO.S208989. PubMed PMID: 31372019; PubMed Central PMCID: PMCPMC6628146.

784. Qin W, Wu D, Luo Y, Zhao M, Wang Y, Shi X, et al. Neurological manifestations of autoinflammatory diseases in Chinese adult patients. Semin Arthritis Rheum (2020). Epub 2020/03/03. doi: 10.1016/j.semarthrit.2019.12.003. PubMed PMID: 32115236.

785. Rampanelli E, Orso E, Ochodnicky P, Liebisch G, Bakker PJ, Claessen N, et al. Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Sci Rep (2017) 7(1):2861. Epub 2017/06/08. doi: 10.1038/s41598-017-01994-9. PubMed PMID: 28588189; PubMed Central PMCID: PMCPMC5460122.

786. Ren XS, Tong Y, Ling L, Chen D, Sun HJ, Zhou H, et al. NLRP3 Gene Deletion Attenuates Angiotensin II-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Vascular Remodeling. Cell Physiol Biochem (2017) 44(6):2269-80. Epub 2017/12/21. doi: 10.1159/000486061. PubMed PMID: 29262411.

787. Roberts RL, Van Rij AM, Phillips LV, Young S, McCormick SP, Merriman TR, et al. Interaction of the inflammasome genes CARD8 and NLRP3 in abdominal aortic aneurysms. Atherosclerosis (2011) 218(1):123-6. Epub 2011/05/31. doi: 10.1016/j.atherosclerosis.2011.04.043. PubMed PMID: 21621776.

788. Shimabukuro M, Hirata Y, Tabata M, Dagvasumberel M, Sato H, Kurobe H, et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol (2013) 33(5):1077-84. Epub 2013/03/09. doi: 10.1161/ATVBAHA.112.300829. PubMed PMID: 23471228.

789. Shinar Y, Tohami T, Livneh A, Schiby G, Hirshberg A, Nagar M, et al. Acquired familial Mediterranean fever associated with a somatic MEFV mutation in a patient with JAK2 associated post-polycythemia myelofibrosis. Orphanet J Rare Dis (2015) 10:86. Epub 2015/07/01. doi: 10.1186/s13023-015-0298-6. PubMed PMID: 26123310; PubMed Central PMCID: PMCPMC4506767.

790. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology (2015) 156(11):4281-92. Epub 2015/09/12. doi: 10.1210/en.2015-1408. PubMed PMID: 26360504.

791. Sliva J, Charalambous C, Bultas J, Karetova D. A new strategy for the treatment of atherothrombosis – inhibition of inflammation. Physiol Res (2019) 68(Suppl 1):S17-S30. Epub 2019/11/23. doi: 10.33549/physiolres.934327. PubMed PMID: 31755287.

792. Socha MW, Malinowski B, Puk O, Dubiel M, Wicinski M. The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia. Cells (2020) 9(7). Epub 2020/07/12. doi: 10.3390/cells9071642. PubMed PMID: 32650532.

793. Sogawa Y, Nagasu H, Itano S, Kidokoro K, Taniguchi S, Takahashi M, et al. The eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal injury model mice. PLoS One (2018) 13(10):e0203823. Epub 2018/10/04. doi: 10.1371/journal.pone.0203823. PubMed PMID: 30281670; PubMed Central PMCID: PMCPMC6169882.

794. Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, et al. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep (2017) 7(1):8801. Epub 2017/08/20. doi: 10.1038/s41598-017-08054-2. PubMed PMID: 28821730; PubMed Central PMCID: PMCPMC5562821.

795. Sun HJ, Ren XS, Xiong XQ, Chen YZ, Zhao MX, Wang JJ, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis (2017) 8(10):e3074. Epub 2017/10/06. doi: 10.1038/cddis.2017.470. PubMed PMID: 28981106; PubMed Central PMCID: PMCPMC5680591.

796. Tang B, Chen GX, Liang MY, Yao JP, Wu ZK. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol (2015) 180:134-41. Epub 2014/12/02. doi: 10.1016/j.ijcard.2014.11.161. PubMed PMID: 25438234.

797. Wakamatsu T, Yamamoto S, Ito T, Sato Y, Matsuo K, Takahashi Y, et al. Indoxyl Sulfate Promotes Macrophage IL-1beta Production by Activating Aryl Hydrocarbon Receptor/NF-kappa/MAPK Cascades, but the NLRP3 inflammasome Was Not Activated. Toxins (Basel) (2018) 10(3). Epub 2018/03/16. doi: 10.3390/toxins10030124. PubMed PMID: 29543732; PubMed Central PMCID: PMCPMC5869412.

798. Wang F, Liu Q, Jin L, Hu S, Luo R, Han M, et al. Combination exposure of melamine and cyanuric acid is associated with polyuria and activation of NLRP3 inflammasome in rats. Am J Physiol Renal Physiol (2018) 315(2):F199-F210. Epub 2018/03/30. doi: 10.1152/ajprenal.00609.2017. PubMed PMID: 29592526.

799. Wang K, Hu L, Chen JK. RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury. Biomed Pharmacother (2018) 101:617-26. Epub 2018/03/09. doi: 10.1016/j.biopha.2018.02.010. PubMed PMID: 29518608.

800. Wang L, Chen Y, Li X, Zhang Y, Gulbins E, Zhang Y. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget (2016) 7(45):73229-41. Epub 2016/10/01. doi: 10.18632/oncotarget.12302. PubMed PMID: 27689324; PubMed Central PMCID: PMCPMC5341975.

801. Wang LF, Ding YJ, Zhao Q, Zhang XL. Investigation on the association between NLRP3 gene polymorphisms and susceptibility to primary gout. Genet Mol Res (2015) 14(4):16410-4. Epub 2015/12/15. doi: 10.4238/2015.December.9.10. PubMed PMID: 26662437.

802. Wang ML, Kang YM, Li XG, Su Q, Li HB, Liu KL, et al. Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J Neuroinflammation (2018) 15(1):95. Epub 2018/03/27. doi: 10.1186/s12974-018-1131-7. PubMed PMID: 29573749; PubMed Central PMCID: PMCPMC5866519.

803. Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep (2015) 5:12676. Epub 2015/08/04. doi: 10.1038/srep12676. PubMed PMID: 26234821; PubMed Central PMCID: PMCPMC4522654.

804. Wang Y, Wu Y, Chen J, Zhao S, Li H. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology (2013) 126(1):1-11. Epub 2013/07/11. doi: 10.1159/000351179. PubMed PMID: 23839341.

805. Xie Q, Wei T, Huang C, Liu P, Sun M, Shen W, et al. Nebivolol Ameliorates Cardiac NLRP3 Inflammasome Activation in a Juvenile-Adolescent Animal Model of Diet-Induced Obesity. Sci Rep (2016) 6:34326. Epub 2016/10/01. doi: 10.1038/srep34326. PubMed PMID: 27686325; PubMed Central PMCID: PMCPMC5043271.

806. Xu L, Li S, Liu Z, Jiang S, Wang J, Guo M, et al. The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population. J Matern Fetal Neonatal Med (2019) 32(11):1792-9. Epub 2018/02/02. doi: 10.1080/14767058.2017.1418313. PubMed PMID: 29385859.

807. Yan J, Wang A, Cao J, Chen L. Apelin/APJ system: an emerging therapeutic target for respiratory diseases. Cell Mol Life Sci (2020). Epub 2020/03/05. doi: 10.1007/s00018-020-03461-7. PubMed PMID: 32128601.

808. Yin J, You S, Liu H, Chen L, Zhang C, Hu H, et al. Role of P2X7R in the development and progression of pulmonary hypertension. Respir Res (2017) 18(1):127. Epub 2017/06/26. doi: 10.1186/s12931-017-0603-0. PubMed PMID: 28646872; PubMed Central PMCID: PMCPMC5483271.

809. Yu SH, Sun X, Kim MK, Akther M, Han JH, Kim TY, et al. Chrysanthemum indicum extract inhibits NLRP3 and AIM2 inflammasome activation via regulating ASC phosphorylation. J Ethnopharmacol (2019) 239:111917. Epub 2019/04/28. doi: 10.1016/j.jep.2019.111917. PubMed PMID: 31028857.

810. Zambom FFF, Oliveira KC, Foresto-Neto O, Faustino VD, Avila VF, Albino AH, et al. Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. Am J Physiol Renal Physiol (2019) 317(4):F1058-F67. Epub 2019/08/15. doi: 10.1152/ajprenal.00251.2019. PubMed PMID: 31411073.

811. Zeng C, Wang R, Tan H. Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci (2019) 15(7):1345-57. Epub 2019/07/25. doi: 10.7150/ijbs.33568. PubMed PMID: 31337966; PubMed Central PMCID: PMCPMC6643148.

812. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol (2020) 21(1):30-41. Epub 2019/12/11. doi: 10.1038/s41590-019-0548-1. PubMed PMID: 31819254.

813. Zhang K, Fan C, Cai D, Zhang Y, Zuo R, Zhu L, et al. Contribution of TGF-Beta-Mediated NLRP3-HMGB1 Activation to Tubulointerstitial Fibrosis in Rat With Angiotensin II-Induced Chronic Kidney Disease. Front Cell Dev Biol (2020) 8:1. Epub 2020/03/03. doi: 10.3389/fcell.2020.00001. PubMed PMID: 32117956; PubMed Central PMCID: PMCPMC7012792.

814. Zhang X, Hong S, Qi S, Liu W, Zhang X, Shi Z, et al. NLRP3 Inflammasome Is Involved in Calcium-Sensing Receptor-Induced Aortic Remodeling in SHRs. Mediators Inflamm (2019) 2019:6847087. Epub 2019/03/25. doi: 10.1155/2019/6847087. PubMed PMID: 30906225; PubMed Central PMCID: PMCPMC6393924.

815. Zhang Y, Song Z, Huang S, Zhu L, Liu T, Shu H, et al. Aloe emodin relieves Ang II-induced endothelial junction dysfunction via promoting ubiquitination mediated NLRP3 inflammasome inactivation. J Leukoc Biol (2020). Epub 2020/06/24. doi: 10.1002/JLB.3MA0520-582R. PubMed PMID: 32573820.

816. Zhang Y, Xu Y, Sun Q, Xue S, Guan H, Ji M. Activation of P2X7R- NLRP3 pathway in Retinal microglia contribute to Retinal Ganglion Cells death in chronic ocular hypertension (COH). Exp Eye Res (2019) 188:107771. Epub 2019/08/26. doi: 10.1016/j.exer.2019.107771. PubMed PMID: 31445901.

817. Zhang Z, Zhang T, Feng R, Huang H, Xia T, Sun C. circARF3 Alleviates Mitophagy-Mediated Inflammation by Targeting miR-103/TRAF3 in Mouse Adipose Tissue. Mol Ther Nucleic Acids (2019) 14:192-203. Epub 2019/01/10. doi: 10.1016/j.omtn.2018.11.014. PubMed PMID: 30623853; PubMed Central PMCID: PMCPMC6325073.

818. Zhao G, Wang X, Edwards S, Dai M, Li J, Wu L, et al. NLRX1 knockout aggravates lipopolysaccharide (LPS)-induced heart injury and attenuates the anti-LPS cardioprotective effect of CYP2J2/11,12-EET by enhancing activation of NF-kappaB and NLRP3 inflammasome. Eur J Pharmacol (2020) 881:173276. Epub 2020/06/24. doi: 10.1016/j.ejphar.2020.173276. PubMed PMID: 32574674.

819. Zhao M, Bai M, Ding G, Zhang Y, Huang S, Jia Z, et al. Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Dis (Basel) (2018) 4(2):83-94. Epub 2018/07/13. doi: 10.1159/000488242. PubMed PMID: 29998123; PubMed Central PMCID: PMCPMC6029226.

820. Zhao X, Gu C, Yan C, Zhang X, Li Y, Wang L, et al. NALP3-Inflammasome-Related Gene Polymorphisms in Patients with Prehypertension and Coronary Atherosclerosis. Biomed Res Int (2016) 2016:7395627. Epub 2016/07/23. doi: 10.1155/2016/7395627. PubMed PMID: 27446957; PubMed Central PMCID: PMCPMC4944040.

821. Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ (2013) 22(9):746-50. Epub 2013/03/07. doi: 10.1016/j.hlc.2013.01.012. PubMed PMID: 23462287.

822. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature (2018) 560(7717):198-203. Epub 2018/07/27. doi: 10.1038/s41586-018-0372-z. PubMed PMID: 30046112; PubMed Central PMCID: PMCPMC6329306.

823. Zhou B, Qiu Y, Wu N, Chen AD, Zhou H, Chen Q, et al. FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. Oxid Med Cell Longev (2020) 2020:6384803. Epub 2020/06/09. doi: 10.1155/2020/6384803. PubMed PMID: 32509148; PubMed Central PMCID: PMCPMC7254086.

824. Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ Res (2020) 126(9):1260-80. Epub 2020/04/24. doi: 10.1161/CIRCRESAHA.120.315937. PubMed PMID: 32324502.

825. Afrasyab A, Qu P, Zhao Y, Peng K, Wang H, Lou D, et al. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels (2016) 31(8):1218-29. Epub 2015/08/21. doi: 10.1007/s00380-015-0723-8. PubMed PMID: 26290166.

826. Ahmad F, Chung YW, Tang Y, Hockman SC, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep (2016) 6:28056. Epub 2016/06/21. doi: 10.1038/srep28056. PubMed PMID: 27321128; PubMed Central PMCID: PMCPMC4913246.

827. Altaf A, Qu P, Zhao Y, Wang H, Lou D, Niu N. NLRP3 inflammasome in peripheral blood monocytes of acute coronary syndrome patients and its relationship with statins. Coron Artery Dis (2015) 26(5):409-21. Epub 2015/05/07. doi: 10.1097/MCA.0000000000000255. PubMed PMID: 25946654.

828. An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, et al. Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases. Front Immunol (2019) 10:1592. Epub 2019/07/30. doi: 10.3389/fimmu.2019.01592. PubMed PMID: 31354731; PubMed Central PMCID: PMCPMC6635885.

829. Bando S, Fukuda D, Soeki T, Nishimoto S, Uematsu E, Matsuura T, et al. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis (2015) 242(2):407-14. Epub 2015/08/19. doi: 10.1016/j.atherosclerosis.2015.07.043. PubMed PMID: 26282945.

830. Baragetti A, Catapano AL, Magni P. Multifactorial Activation of NLRP3 Inflammasome: Relevance for a Precision Approach to Atherosclerotic Cardiovascular Risk and Disease. Int J Mol Sci (2020) 21(12). Epub 2020/06/27. doi: 10.3390/ijms21124459. PubMed PMID: 32585928.

831. Bian F, Yang XY, Xu G, Zheng T, Jin S. CRP-Induced NLRP3 Inflammasome Activation Increases LDL Transcytosis Across Endothelial Cells. Front Pharmacol (2019) 10:40. Epub 2019/02/15. doi: 10.3389/fphar.2019.00040. PubMed PMID: 30761006; PubMed Central PMCID: PMCPMC6363700.

832. Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cell Physiol Biochem (2017) 44(1):152-62. Epub 2017/11/14. doi: 10.1159/000484623. PubMed PMID: 29130962; PubMed Central PMCID: PMCPMC5828122.

833. Boland AJ, Gangadharan N, Kavanagh P, Hemeryck L, Kieran J, Barry M, et al. Simvastatin Suppresses Interleukin Ibeta Release in Human Peripheral Blood Mononuclear Cells Stimulated With Cholesterol Crystals. J Cardiovasc Pharmacol Ther (2018) 23(6):509-17. Epub 2018/05/17. doi: 10.1177/1074248418776261. PubMed PMID: 29764192.

834. Bonaventura A, Vecchie A, Abbate A, Montecucco F. Neutrophil Extracellular Traps and Cardiovascular Diseases: An Update. Cells (2020) 9(1). Epub 2020/01/23. doi: 10.3390/cells9010231. PubMed PMID: 31963447; PubMed Central PMCID: PMCPMC7016588.

835. Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S, Darwesh AM, et al. Empagliflozin Blunts Worsening Cardiac Dysfunction Associated With Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circ Heart Fail (2020) 13(1):e006277. Epub 2020/01/21. doi: 10.1161/CIRCHEARTFAILURE.119.006277. PubMed PMID: 31957470.

836. Che H, Wang Y, Li H, Li Y, Sahil A, Lv J, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-beta1/Smads signaling in diabetic cardiomyopathy. FASEB J (2020) 34(4):5282-98. Epub 2020/02/19. doi: 10.1096/fj.201902692R. PubMed PMID: 32067273.

837. Chen S, Markman JL, Shimada K, Crother TR, Lane M, Abolhesn A, et al. Sex-Specific Effects of the Nlrp3 Inflammasome on Atherogenesis in LDL Receptor-Deficient Mice. JACC Basic Transl Sci (2020) 5(6):582-98. Epub 2020/07/03. doi: 10.1016/j.jacbts.2020.03.016. PubMed PMID: 32613145; PubMed Central PMCID: PMCPMC7315187.

838. Chen TC, Yen CK, Lu YC, Shi CS, Hsieh RZ, Chang SF, et al. The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell Biosci (2020) 10:5. Epub 2020/01/16. doi: 10.1186/s13578-019-0372-1. PubMed PMID: 31938471; PubMed Central PMCID: PMCPMC6953308.

839. Chen X, Guo X, Ge Q, Zhao Y, Mu H, Zhang J. ER Stress Activates the NLRP3 Inflammasome: A Novel Mechanism of Atherosclerosis. Oxid Med Cell Longev (2019) 2019:3462530. Epub 2019/11/07. doi: 10.1155/2019/3462530. PubMed PMID: 31687078; PubMed Central PMCID: PMCPMC6800950 publication of this paper.

840. Clement M, Chen X, Chenoweth HL, Teng Z, Thome S, Newland SA, et al. MARK4 (Microtubule Affinity-Regulating Kinase 4)-Dependent Inflammasome Activation Promotes Atherosclerosis-Brief Report. Arterioscler Thromb Vasc Biol (2019) 39(8):1645-51. Epub 2019/06/07. doi: 10.1161/ATVBAHA.119.312478. PubMed PMID: 31167564.

841. Connat JL. [Inflammasome and cardiovascular diseases]. Ann Cardiol Angeiol (Paris) (2011) 60(1):48-54. Epub 2010/08/31. doi: 10.1016/j.ancard.2010.07.011. PubMed PMID: 20800829.

842. D’Espessailles A, Mora YA, Fuentes C, Cifuentes M. Calcium-sensing receptor activates the NLRP3 inflammasome in LS14 preadipocytes mediated by ERK1/2 signaling. J Cell Physiol (2018) 233(8):6232-40. Epub 2018/01/19. doi: 10.1002/jcp.26490. PubMed PMID: 29345311.

843. Dai Y, Dai D, Wang X, Ding Z, Mehta JL. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther (2014) 28(5):425-32. Epub 2014/07/16. doi: 10.1007/s10557-014-6539-4. PubMed PMID: 25022544.

844. Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol (2020). Epub 2020/04/07. doi: 10.1016/j.hjc.2020.03.002. PubMed PMID: 32251729; PubMed Central PMCID: PMCPMC7194546.

845. Ding T, Wang S, Zhang X, Zai W, Fan J, Chen W, et al. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine (2018) 41:45-53. Epub 2018/03/10. doi: 10.1016/j.phymed.2018.01.026. PubMed PMID: 29519318.

846. Duan H, Zhang X, Song R, Liu T, Zhang Y, Yu A. Upregulation of miR-133a by adiponectin inhibits pyroptosis pathway and rescues acute aortic dissection. Acta Biochim Biophys Sin (Shanghai) (2020). Epub 2020/07/08. doi: 10.1093/abbs/gmaa078. PubMed PMID: 32634201.

847. Ehsan M, Singh KK, Lovren F, Pan Y, Quan A, Mantella LE, et al. Adiponectin limits monocytic microparticle-induced endothelial activation by modulation of the AMPK, Akt and NFkappaB signaling pathways. Atherosclerosis (2016) 245:1-11. Epub 2015/12/22. doi: 10.1016/j.atherosclerosis.2015.11.024. PubMed PMID: 26687997.

848. Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1beta production in activated human macrophages. Circ Res (2014) 115(10):875-83. Epub 2014/09/04. doi: 10.1161/CIRCRESAHA.115.304437. PubMed PMID: 25185259; PubMed Central PMCID: PMCPMC4209192.

849. Ghiasi SM, Dahllof MS, Osmai Y, Osmai M, Jakobsen KK, Aivazidis A, et al. Regulation of the beta-cell inflammasome and contribution to stress-induced cellular dysfunction and apoptosis. Mol Cell Endocrinol (2018) 478:106-14. Epub 2018/08/20. doi: 10.1016/j.mce.2018.08.001. PubMed PMID: 30121202.

850. Gong DM, Zhang YL, Chen DY, Hong LJ, Han F, Liu QB, et al. Endothelial GPR124 Exaggerates the Pathogenesis of Atherosclerosis by Activating Inflammation. Cell Physiol Biochem (2018) 45(2):547-57. Epub 2018/02/07. doi: 10.1159/000487032. PubMed PMID: 29402834.

851. Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res (2018) 122(12):1722-40. Epub 2018/06/09. doi: 10.1161/CIRCRESAHA.118.311362. PubMed PMID: 29880500.

852. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep (2013) 15(3):313. Epub 2013/02/16. doi: 10.1007/s11926-012-0313-z. PubMed PMID: 23412688; PubMed Central PMCID: PMCPMC3623938.

853. Gregersen I, Sandanger O, Askevold ET, Sagen EL, Yang K, Holm S, et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS One (2017) 12(11):e0188387. Epub 2017/11/28. doi: 10.1371/journal.pone.0188387. PubMed PMID: 29176764; PubMed Central PMCID: PMCPMC5703457.

854. Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway. J Inflamm Res (2018) 11:359-74. Epub 2018/10/06. doi: 10.2147/JIR.S141220. PubMed PMID: 30288079; PubMed Central PMCID: PMCPMC6161739.

855. Hang L, Peng Y, Xiang R, Li X, Li Z. Ox-LDL Causes Endothelial Cell Injury Through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress. Drug Des Devel Ther (2020) 14:731-44. Epub 2020/03/12. doi: 10.2147/DDDT.S231916. PubMed PMID: 32158192; PubMed Central PMCID: PMCPMC7047838.

856. Henriksbo BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte (2015) 4(4):232-8. Epub 2015/10/10. doi: 10.1080/21623945.2015.1024394. PubMed PMID: 26451278; PubMed Central PMCID: PMCPMC4573193.

857. Henriksbo BD, Tamrakar AK, Phulka JS, Barra NG, Schertzer JD. Statins activate the NLRP3 inflammasome and impair insulin signaling via p38 and mTOR. Am J Physiol Endocrinol Metab (2020) 319(1):E110-E6. Epub 2020/05/19. doi: 10.1152/ajpendo.00125.2020. PubMed PMID: 32421368.

858. Hermansson C, Lundqvist A, Wasslavik C, Palmqvist L, Jeppsson A, Hulten LM. Reduced expression of NLRP3 and MEFV in human ischemic heart tissue. Biochem Biophys Res Commun (2013) 430(1):425-8. Epub 2012/12/05. doi: 10.1016/j.bbrc.2012.11.070. PubMed PMID: 23206693.

859. Ho CM, Ho SL, Jeng YM, Lai YS, Chen YH, Lu SC, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) (2019) 16:7. Epub 2019/04/16. doi: 10.1186/s12950-019-0211-5. PubMed PMID: 30983887; PubMed Central PMCID: PMCPMC6444889.

860. Horn P, Newsome PN. Emerging therapeutic targets for NASH: key innovations at the preclinical level. Expert Opin Ther Targets (2020) 24(3):175-86. Epub 2020/02/14. doi: 10.1080/14728222.2020.1728742. PubMed PMID: 32053033.

861. Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol (2020) 8:140. Epub 2020/04/01. doi: 10.3389/fcell.2020.00140. PubMed PMID: 32226786; PubMed Central PMCID: PMCPMC7080656.

862. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J (2016) 37(25):1959-67. Epub 2015/12/26. doi: 10.1093/eurheartj/ehv653. PubMed PMID: 26705388.

863. Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, et al. MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun (2016) 471(4):423-9. Epub 2016/02/24. doi: 10.1016/j.bbrc.2016.02.065. PubMed PMID: 26898797; PubMed Central PMCID: PMCPMC4818978.

864. Jiang C, Jiang L, Li Q, Liu X, Zhang T, Dong L, et al. Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology (2018) 410:26-40. Epub 2018/09/12. doi: 10.1016/j.tox.2018.09.002. PubMed PMID: 30205151.

865. Jiang W, Geng H, Lv X, Ma J, Liu F, Lin P, et al. Idebenone Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice Via Activation of the SIRT3-SOD2-mtROS Pathway. Cardiovasc Drugs Ther (2020). Epub 2020/06/20. doi: 10.1007/s10557-020-07018-5. PubMed PMID: 32557012.

866. Jiang Y, Du H, Liu X, Fu X, Li X, Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-kappaB/NLRP3 inflammasomes pathway. J Drug Target (2020) 28(1):70-9. Epub 2019/05/17. doi: 10.1080/1061186X.2019.1616296. PubMed PMID: 31094238.

867. Kang P, Wang J, Fang D, Fang T, Yu Y, Zhang W, et al. Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol Med (2020) 146:198-210. Epub 2019/11/07. doi: 10.1016/j.freeradbiomed.2019.10.416. PubMed PMID: 31689484.

868. Kastbom A, Arlestig L, Rantapaa-Dahlqvist S. Genetic Variants of the NLRP3 Inflammasome Are Associated with Stroke in Patients with Rheumatoid Arthritis. J Rheumatol (2015) 42(10):1740-5. Epub 2015/07/17. doi: 10.3899/jrheum.141529. PubMed PMID: 26178285.

869. Ke B, Shen W, Fang X, Wu Q. The NLPR3 inflammasome and obesity-related kidney disease. J Cell Mol Med (2018) 22(1):16-24. Epub 2017/09/01. doi: 10.1111/jcmm.13333. PubMed PMID: 28857469; PubMed Central PMCID: PMCPMC5742686.

870. Kollgaard T, Enevold C, Bendtzen K, Hansen PR, Givskov M, Holmstrup P, et al. Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis. PLoS One (2017) 12(2):e0172773. Epub 2017/02/25. doi: 10.1371/journal.pone.0172773. PubMed PMID: 28235036; PubMed Central PMCID: PMCPMC5325525.

871. Kong F, Ye B, Cao J, Cai X, Lin L, Huang S, et al. Curcumin Represses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-kappaB and P2X7R Signaling in PMA-Induced Macrophages. Front Pharmacol (2016) 7:369. Epub 2016/10/26. doi: 10.3389/fphar.2016.00369. PubMed PMID: 27777559; PubMed Central PMCID: PMCPMC5056188.

872. Kong F, Ye B, Lin L, Cai X, Huang W, Huang Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-kappaB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother (2016) 82:167-72. Epub 2016/07/30. doi: 10.1016/j.biopha.2016.04.043. PubMed PMID: 27470352.

873. Le Dare B, Lagente V, Gicquel T. Ethanol and its metabolites: update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab Rev (2019) 51(4):545-61. Epub 2019/10/28. doi: 10.1080/03602532.2019.1679169. PubMed PMID: 31646907.

874. Li JP, Wei W, Li XX, Xu M. Regulation of NLRP3 inflammasome by CD38 through cADPR-mediated Ca(2+) release in vascular smooth muscle cells in diabetic mice. Life Sci (2020) 255:117758. Epub 2020/05/15. doi: 10.1016/j.lfs.2020.117758. PubMed PMID: 32407845.

875. Li XX, Ling SK, Hu MY, Ma Y, Li Y, Huang PL. Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats. Free Radic Biol Med (2019) 145:175-86. Epub 2019/09/22. doi: 10.1016/j.freeradbiomed.2019.09.015. PubMed PMID: 31541678.

876. Li Y, Niu X, Xu H, Li Q, Meng L, He M, et al. VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell Res (2020) 389(1):111847. Epub 2020/01/24. doi: 10.1016/j.yexcr.2020.111847. PubMed PMID: 31972218.

877. Li Y, Xu S, Jiang B, Cohen RA, Zang M. Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS One (2013) 8(6):e67532. Epub 2013/07/05. doi: 10.1371/journal.pone.0067532. PubMed PMID: 23825667; PubMed Central PMCID: PMCPMC3692453.

878. Li Y, Yang J, Chen MH, Wang Q, Qin MJ, Zhang T, et al. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol Res (2015) 99:101-15. Epub 2015/06/10. doi: 10.1016/j.phrs.2015.05.012. PubMed PMID: 26054569.

879. Lian D, Yuan H, Yin X, Wu Y, He R, Huang Y, et al. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine (2019) 55:310-9. Epub 2018/11/06. doi: 10.1016/j.phymed.2018.10.013. PubMed PMID: 30385134.

880. Liaqat A, Asad M, Shoukat F, Khan AU. A Spotlight on the Underlying Activation Mechanisms of the NLRP3 Inflammasome and its Role in Atherosclerosis: A Review. Inflammation (2020). Epub 2020/07/14. doi: 10.1007/s10753-020-01290-1. PubMed PMID: 32656610.

881. Libby P, Everett BM. Novel Antiatherosclerotic Therapies. Arterioscler Thromb Vasc Biol (2019) 39(4):538-45. Epub 2019/03/01. doi: 10.1161/ATVBAHA.118.310958. PubMed PMID: 30816799; PubMed Central PMCID: PMCPMC6436984.

882. Libby P, Vromman A. Taking Sex Seriously: An Oft-Overlooked Biological Variable. JACC Basic Transl Sci (2020) 5(6):599-601. Epub 2020/07/03. doi: 10.1016/j.jacbts.2020.03.017. PubMed PMID: 32614934; PubMed Central PMCID: PMCPMC7315183.

883. Liu B, Mao X, Huang D, Li F, Dong N. Novel role of NLRP3-inflammasome in regulation of lipogenesis in fasting-induced hepatic steatosis. Diabetes Metab Syndr Obes (2019) 12:801-11. Epub 2019/06/27. doi: 10.2147/DMSO.S206558. PubMed PMID: 31239738; PubMed Central PMCID: PMCPMC6551611.

884. Liu Y, Li C, Yin H, Zhang X, Li Y. NLRP3 Inflammasome: A Potential Alternative Therapy Target for Atherosclerosis. Evid Based Complement Alternat Med (2020) 2020:1561342. Epub 2020/04/25. doi: 10.1155/2020/1561342. PubMed PMID: 32328119; PubMed Central PMCID: PMCPMC7150718.

885. Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci (2020) 5(6):632-44. Epub 2020/07/03. doi: 10.1016/j.jacbts.2020.02.004. PubMed PMID: 32613148; PubMed Central PMCID: PMCPMC7315190.

886. Lu LQ, Tian J, Luo XJ, Peng J. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci (2020). Epub 2020/07/01. doi: 10.1007/s00018-020-03587-8. PubMed PMID: 32596778.

887. Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, et al. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front Physiol (2017) 8:519. Epub 2017/08/10. doi: 10.3389/fphys.2017.00519. PubMed PMID: 28790925; PubMed Central PMCID: PMCPMC5524816.

888. Luo B, Li B, Wang W, Liu X, Liu X, Xia Y, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther (2014) 28(1):33-43. Epub 2013/11/21. doi: 10.1007/s10557-013-6498-1. PubMed PMID: 24254031.

889. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One (2014) 9(8):e104771. Epub 2014/08/20. doi: 10.1371/journal.pone.0104771. PubMed PMID: 25136835; PubMed Central PMCID: PMCPMC4138036.

890. Luo X, Hu Y, He S, Ye Q, Lv Z, Liu J, et al. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation. Arch Biochem Biophys (2019) 671:203-9. Epub 2019/07/16. doi: 10.1016/ PubMed PMID: 31302140.

891. Abdellatif M, Zirlik A. Immunometabolism: a key target to improve microcirculation in ageing. Cardiovasc Res (2020) 116(5):e48-e50. Epub 2020/03/29. doi: 10.1093/cvr/cvaa060. PubMed PMID: 32219374.

892. Ahechu P, Zozaya G, Marti P, Hernandez-Lizoain JL, Baixauli J, Unamuno X, et al. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol (2018) 9:2918. Epub 2019/01/09. doi: 10.3389/fimmu.2018.02918. PubMed PMID: 30619282; PubMed Central PMCID: PMCPMC6297839.

893. Avolio E, Fazzari G, Zizza M, De Lorenzo A, Di Renzo L, Alo R, et al. Probiotics modify body weight together with anxiety states via pro-inflammatory factors in HFD-treated Syrian golden hamster. Behav Brain Res (2019) 356:390-9. Epub 2018/09/18. doi: 10.1016/j.bbr.2018.09.010. PubMed PMID: 30223002.

894. Bakker PJ, Butter LM, Kors L, Teske GJ, Aten J, Sutterwala FS, et al. Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int (2014) 85(5):1112-22. Epub 2013/12/20. doi: 10.1038/ki.2013.503. PubMed PMID: 24352154.

895. Betanzos-Cabrera G, Estrada-Luna D, Belefant-Miller H, Cancino-Diaz JC. Mice fed with a high fat diet show a decrease in the expression of “toll like receptor (TLR)2 and TLR6 mRNAs in adipose and hepatic tissues. Nutr Hosp (2012) 27(4):1196-203. Epub 2012/11/21. doi: 10.3305/nh.2012.27.4.5842. PubMed PMID: 23165562.

896. Bing C. Is interleukin-1beta a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte (2015) 4(2):149-52. Epub 2015/07/15. doi: 10.4161/21623945.2014.979661. PubMed PMID: 26167419; PubMed Central PMCID: PMCPMC4496963.

897. Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine. Cardiovasc Drugs Ther (2016) 30(6):539-50. Epub 2016/11/11. doi: 10.1007/s10557-016-6701-2. PubMed PMID: 27830382.

898. Cai M, Hu JY, Liu BB, Li JJ, Li F, Lou S. The Molecular Mechanisms of Excessive Hippocampal Endoplasmic Reticulum Stress Depressing Cognition-related Proteins Expression and the Regulatory Effects of Nrf2. Neuroscience (2020) 431:152-65. Epub 2020/02/18. doi: 10.1016/j.neuroscience.2020.02.001. PubMed PMID: 32062019.

899. Cai M, Wang H, Li JJ, Zhang YL, Xin L, Li F, et al. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise. Brain Behav Immun (2016) 57:347-59. Epub 2016/05/18. doi: 10.1016/j.bbi.2016.05.010. PubMed PMID: 27189035.

900. Carbone S, Mauro AG, Prestamburgo A, Halquist MS, Narayan P, Potere N, et al. An Orally Available NLRP3 Inflammasome Inhibitor Prevents Western Diet-Induced Cardiac Dysfunction in Mice. J Cardiovasc Pharmacol (2018) 72(6):303-7. Epub 2018/11/14. doi: 10.1097/FJC.0000000000000628. PubMed PMID: 30422890; PubMed Central PMCID: PMCPMC6511457.

901. Chen Y, Pitzer AL, Li X, Li PL, Wang L, Zhang Y. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1. J Cell Mol Med (2015) 19(12):2715-27. Epub 2015/08/22. doi: 10.1111/jcmm.12657. PubMed PMID: 26293846; PubMed Central PMCID: PMCPMC4687695.

902. Chen Y, Qian Q, Yu J. Carbenoxolone ameliorates insulin sensitivity in obese mice induced by high fat diet via regulating the IkappaB-alpha/NF-kappaB pathway and NLRP3 inflammasome. Biomed Pharmacother (2019) 115:108868. Epub 2019/04/19. doi: 10.1016/j.biopha.2019.108868. PubMed PMID: 30999127.

903. D’Espessailles A, Santillana N, Sanhueza S, Fuentes C, Cifuentes M. Calcium sensing receptor activation in THP-1 macrophages triggers NLRP3 inflammasome and human preadipose cell inflammation. Mol Cell Endocrinol (2020) 501:110654. Epub 2019/11/18. doi: 10.1016/j.mce.2019.110654. PubMed PMID: 31734269.

904. Dai L, Bhargava P, Stanya KJ, Alexander RK, Liou YH, Jacobi D, et al. Macrophage alternative activation confers protection against lipotoxicity-induced cell death. Mol Metab (2017) 6(10):1186-97. Epub 2017/10/17. doi: 10.1016/j.molmet.2017.08.001. PubMed PMID: 29031719; PubMed Central PMCID: PMCPMC5641682.

905. De Boer AA, Monk JM, Liddle DM, Hutchinson AL, Power KA, Ma DW, et al. Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b(+) macrophages. J Nutr Biochem (2016) 34:61-72. Epub 2016/05/22. doi: 10.1016/j.jnutbio.2016.04.004. PubMed PMID: 27208584.

906. de Sant’Ana LP, Ribeiro DJS, Martins AMA, Dos Santos FN, Correa R, Almeida RDN, et al. Absence of the Caspases 1/11 Modulates Liver Global Lipid Profile and Gut Microbiota in High-Fat-Diet-Induced Obese Mice. Front Immunol (2019) 10:2926. Epub 2020/01/31. doi: 10.3389/fimmu.2019.02926. PubMed PMID: 31998283; PubMed Central PMCID: PMCPMC6962112.

907. Devasani K, Kaul R, Majumdar A. Supplementation of pyrroloquinoline quinone with atorvastatin augments mitochondrial biogenesis and attenuates low grade inflammation in obese rats. Eur J Pharmacol (2020) 881:173273. Epub 2020/06/15. doi: 10.1016/j.ejphar.2020.173273. PubMed PMID: 32535101.

908. Dewhurst-Trigg R, Hulston CJ, Markey O. The effect of quantity and quality of dietary fat intake on subcutaneous white adipose tissue inflammatory responses. Proc Nutr Soc (2020):1-15. Epub 2020/02/18. doi: 10.1017/S0029665120000038. PubMed PMID: 32063233.

909. Engin A. Fat Cell and Fatty Acid Turnover in Obesity. Adv Exp Med Biol (2017) 960:135-60. Epub 2017/06/07. doi: 10.1007/978-3-319-48382-5_6. PubMed PMID: 28585198.

910. Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol (2017) 960:327-43. Epub 2017/06/07. doi: 10.1007/978-3-319-48382-5_14. PubMed PMID: 28585206.

911. Eo H, Lim Y. Combined Mulberry Leaf and Fruit Extract Improved Early Stage of Cutaneous Wound Healing in High-Fat Diet-Induced Obese Mice. J Med Food (2016) 19(2):161-9. Epub 2015/10/23. doi: 10.1089/jmf.2015.3510. PubMed PMID: 26491791.

912. Esser N, L’Homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia (2013) 56(11):2487-97. Epub 2013/09/10. doi: 10.1007/s00125-013-3023-9. PubMed PMID: 24013717.

913. Fan R, You M, Toney AM, Kim J, Giraud D, Xian Y, et al. Red Raspberry Polyphenols Attenuate High-Fat Diet-Driven Activation of NLRP3 Inflammasome and its Paracrine Suppression of Adipogenesis via Histone Modifications. Mol Nutr Food Res (2019):e1900995. Epub 2019/12/02. doi: 10.1002/mnfr.201900995. PubMed PMID: 31786828.

914. Fan W, Xu Y, Liu Y, Zhang Z, Lu L, Ding Z. Obesity or Overweight, a Chronic Inflammatory Status in Male Reproductive System, Leads to Mice and Human Subfertility. Front Physiol (2017) 8:1117. Epub 2018/01/23. doi: 10.3389/fphys.2017.01117. PubMed PMID: 29354072; PubMed Central PMCID: PMCPMC5758580.

915. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes (2015) 64(6):2116-28. Epub 2015/01/30. doi: 10.2337/db14-1098. PubMed PMID: 25626736.

916. Furuoka M, Ozaki K, Sadatomi D, Mamiya S, Yonezawa T, Tanimura S, et al. TNF-alpha Induces Caspase-1 Activation Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells. J Cell Physiol (2016) 231(12):2761-7. Epub 2016/03/19. doi: 10.1002/jcp.25385. PubMed PMID: 26989816.

917. Garay-Lugo N, Dominguez-Lopez A, Miliar Garcia A, Aguilar Barrera E, Gomez Lopez M, Gomez Alcala A, et al. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol (2016) 38(5):353-63. Epub 2016/07/02. doi: 10.1080/08923973.2016.1208221. PubMed PMID: 27367537.

918. Ge C, Xu M, Qin Y, Gu T, Lou D, Li Q, et al. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct (2019) 10(5):2970-85. Epub 2019/05/11. doi: 10.1039/c8fo01653d. PubMed PMID: 31074472.

919. Gianfrancesco MA, Dehairs J, L’Homme L, Herinckx G, Esser N, Jansen O, et al. Saturated fatty acids induce NLRP3 activation in human macrophages through K(+) efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim Biophys Acta Mol Cell Biol Lipids (2019) 1864(7):1017-30. Epub 2019/04/07. doi: 10.1016/j.bbalip.2019.04.001. PubMed PMID: 30953761.

920. Goos H, Fogarty CL, Sahu B, Plagnol V, Rajamaki K, Nurmi K, et al. Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy. J Allergy Clin Immunol (2019) 144(5):1364-76. Epub 2019/06/16. doi: 10.1016/j.jaci.2019.06.003. PubMed PMID: 31201888.

921. Grand D, Navrazhina K, Frew JW. Integrating complement into the molecular pathogenesis of Hidradenitis Suppurativa. Exp Dermatol (2020) 29(1):86-92. Epub 2019/11/07. doi: 10.1111/exd.14056. PubMed PMID: 31688984.

922. Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM. Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. J Clin Invest (2020) 130(4):1961-76. Epub 2020/01/15. doi: 10.1172/JCI126078. PubMed PMID: 31935195; PubMed Central PMCID: PMCPMC7108893.

923. Gurung P, Lukens JR, Kanneganti TD. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med (2015) 21(3):193-201. Epub 2014/12/17. doi: 10.1016/j.molmed.2014.11.008. PubMed PMID: 25500014; PubMed Central PMCID: PMCPMC4352396.

924. Han JH, Shin H, Rho JG, Kim JE, Son DH, Yoon J, et al. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes Metab (2018) 20(9):2179-89. Epub 2018/05/10. doi: 10.1111/dom.13350. PubMed PMID: 29740969.

925. Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol (2016) 310(2):G117-27. Epub 2015/11/14. doi: 10.1152/ajpgi.00246.2015. PubMed PMID: 26564716.

926. Haneklaus M, O’Neill LA. NLRP3 at the interface of metabolism and inflammation. Immunol Rev (2015) 265(1):53-62. Epub 2015/04/17. doi: 10.1111/imr.12285. PubMed PMID: 25879283.

927. Hou XX, Dong HR, Sun LJ, Yang M, Cheng H, Chen YP. Purinergic 2X7 Receptor is Involved in the Podocyte Damage of Obesity-Related Glomerulopathy via Activating Nucleotide-Binding and Oligomerization Domain-Like Receptor Protein 3 Inflammasome. Chin Med J (Engl) (2018) 131(22):2713-25. Epub 2018/11/15. doi: 10.4103/0366-6999.245270. PubMed PMID: 30425198; PubMed Central PMCID: PMCPMC6247604.

928. Huang X, Yu T, Ma C, Wang Y, Xie B, Xuan D, et al. Macrophages Play a Key Role in the Obesity-Induced Periodontal Innate Immune Dysfunction via Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Pathway. J Periodontol (2016) 87(10):1195-205. Epub 2016/05/24. doi: 10.1902/jop.2016.160102. PubMed PMID: 27212109.

929. Jahng JW, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med (2016) 48:e217. Epub 2016/03/12. doi: 10.1038/emm.2016.20. PubMed PMID: 26964833; PubMed Central PMCID: PMCPMC4892881.

930. Jeong A, Imboden M, Ghantous A, Novoloaca A, Carsin AE, Kogevinas M, et al. DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma. Int J Environ Res Public Health (2019) 16(4). Epub 2019/02/23. doi: 10.3390/ijerph16040600. PubMed PMID: 30791383; PubMed Central PMCID: PMCPMC6406386.

931. Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, et al. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine (2019) 58:152871. Epub 2019/03/10. doi: 10.1016/j.phymed.2019.152871. PubMed PMID: 30851580.

932. Kalugotla G, He L, Weber KJ, Daemen S, Reller A, Razani B, et al. Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages. J Leukoc Biol (2019) 106(4):803-14. Epub 2019/06/06. doi: 10.1002/JLB.3HI0219-045RR. PubMed PMID: 31166619; PubMed Central PMCID: PMCPMC7039344.

933. Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys (2020) 680:108227. Epub 2019/12/16. doi: 10.1016/ PubMed PMID: 31838118.

934. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med (2014) 20(1):54-61. Epub 2013/12/18. doi: 10.1038/nm.3423. PubMed PMID: 24336249; PubMed Central PMCID: PMCPMC3912313.

935. Koka S, Xia M, Zhang C, Zhang Y, Li PL, Boini KM. Podocyte NLRP3 Inflammasome Activation and Formation by Adipokine Visfatin. Cell Physiol Biochem (2019) 53(2):355-65. Epub 2019/08/07. doi: 10.33594/000000143. PubMed PMID: 31385664; PubMed Central PMCID: PMCPMC6794193.

936. Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res (2019) 68(11):915-32. Epub 2019/08/01. doi: 10.1007/s00011-019-01273-5. PubMed PMID: 31363792; PubMed Central PMCID: PMCPMC6813288.

937. Kotzbeck P, Giordano A, Mondini E, Murano I, Severi I, Venema W, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J Lipid Res (2018) 59(5):784-94. Epub 2018/03/31. doi: 10.1194/jlr.M079665. PubMed PMID: 29599420; PubMed Central PMCID: PMCPMC5928436.

938. Kwok KHM, Ryden M, Andersson DP, Beauchef G, Guere C, Vie K, et al. Prospective analyses of white adipose tissue gene expression in relation to long-term body weight changes. Int J Obes (Lond) (2020) 44(2):377-87. Epub 2019/06/06. doi: 10.1038/s41366-019-0385-1. PubMed PMID: 31164724.

939. Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis (2015) 6:e1879. Epub 2015/09/12. doi: 10.1038/cddis.2015.248. PubMed PMID: 26355342; PubMed Central PMCID: PMCPMC4650444.

940. Lee J, Hong J, Umetani M, LaVoy EC, Kim J, Park Y. Vascular Protection by Exercise in Obesity: Inflammasome-associated Mechanisms. Med Sci Sports Exerc (2020). Epub 2020/06/20. doi: 10.1249/MSS.0000000000002419. PubMed PMID: 32555019.

941. Lee J, Lee Y, LaVoy EC, Umetani M, Hong J, Park Y. Physical activity protects NLRP3 inflammasome-associated coronary vascular dysfunction in obese mice. Physiol Rep (2018) 6(12):e13738. Epub 2018/06/23. doi: 10.14814/phy2.13738. PubMed PMID: 29932503; PubMed Central PMCID: PMCPMC6014451.

942. Margulis L. Symbiosis and evolution. Sci Am (1971) 225(2):48-57. Epub 1971/08/01. doi: 10.1038/scientificamerican0871-48. PubMed PMID: 5089455.

943. Margulis L. Genetic and evolutionary consequences of symbiosis. Exp Parasitol (1976) 39(2):277-349. Epub 1976/04/01. doi: 10.1016/0014-4894(76)90127-2. PubMed PMID: 816668.

944. Margulis L. Biodiversity: molecular biological domains, symbiosis and kingdom origins. Biosystems (1992) 27(1):39-51. Epub 1992/01/01. doi: 10.1016/0303-2647(92)90045-z. PubMed PMID: 1391690.

945. Margulis L, Bermudes D. Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis (1985) 1:101-24. Epub 1985/01/01. PubMed PMID: 11543608.

946. Margulis L, Stolz JF. Cell symbiosis [correction of symbioisis] theory: status and implications for the fossil record. Adv Space Res (1984) 4(12):195-201. Epub 1984/01/01. doi: 10.1016/0273-1177(84)90562-3. PubMed PMID: 11537775.

947. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol (2018) 103:115-24. Epub 2018/09/25. doi: 10.1016/j.molimm.2018.09.010. PubMed PMID: 30248487.

948. Moon JS, Nakahira K, Chung KP, DeNicola GM, Koo MJ, Pabon MA, et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med (2016) 22(9):1002-12. Epub 2016/07/28. doi: 10.1038/nm.4153. PubMed PMID: 27455510; PubMed Central PMCID: PMCPMC5204248.

949. Rahman SM, Janssen RC, Choudhury M, Baquero KC, Aikens RM, de la Houssaye BA, et al. CCAAT/enhancer-binding protein beta (C/EBPbeta) expression regulates dietary-induced inflammation in macrophages and adipose tissue in mice. J Biol Chem (2012) 287(41):34349-60. Epub 2012/08/21. doi: 10.1074/jbc.M112.410613. PubMed PMID: 22902781; PubMed Central PMCID: PMCPMC3464541.

950. Sandhir R, Halder A, Sunkaria A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim Biophys Acta Mol Basis Dis (2017) 1863(5):1090-7. Epub 2016/10/31. doi: 10.1016/j.bbadis.2016.10.020. PubMed PMID: 27794419.

951. Schuster S, Johnson CD, Hennebelle M, Holtmann T, Taha AY, Kirpich IA, et al. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res (2018) 59(9):1597-609. Epub 2018/08/08. doi: 10.1194/jlr.M083741. PubMed PMID: 30084831; PubMed Central PMCID: PMCPMC6121934.

952. Singh LP, Devi TS, Yumnamcha T. The Role of Txnip in Mitophagy Dysregulation and Inflammasome Activation in Diabetic Retinopathy: A New Perspective. JOJ Ophthalmol (2017) 4(4). Epub 2018/01/30. doi: 10.19080/jojo.2017.04.555643. PubMed PMID: 29376145; PubMed Central PMCID: PMCPMC5786434.

953. Singh LP, Yumnamcha T, Swornalata Devi T. Mitophagic Flux Deregulation, Lysosomal Destabilization and NLRP3 Inflammasome Activation in Diabetic Retinopathy: Potentials of Gene Therapy Targeting TXNIP and The Redox System. Ophthalmol Res Rep (2018) 3(1). Epub 2018/01/01. PubMed PMID: 31355373; PubMed Central PMCID: PMCPMC6660147.

954. Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res (2019) 60(4):721-7. Epub 2019/02/21. doi: 10.1194/jlr.S091280. PubMed PMID: 30782961; PubMed Central PMCID: PMCPMC6446695.

955. Volt H, Garcia JA, Doerrier C, Diaz-Casado ME, Guerra-Librero A, Lopez LC, et al. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res (2016) 60(2):193-205. Epub 2015/12/19. doi: 10.1111/jpi.12303. PubMed PMID: 26681113.

956. Zeng Y, Xu J, Hua YQ, Peng Y, Xu XL. MDM2 contributes to oxidized low-density lipoprotein-induced inflammation through modulation of mitochondrial damage in endothelial cells. Atherosclerosis (2020) 305:1-9. Epub 2020/06/26. doi: 10.1016/j.atherosclerosis.2020.05.020. PubMed PMID: 32585463.

957. Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol (2013) 2013:738794. Epub 2013/11/22. doi: 10.1155/2013/738794. PubMed PMID: 24260034; PubMed Central PMCID: PMCPMC3821892.

958. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol (2011) 12(5):408-15. Epub 2011/04/12. doi: 10.1038/ni.2022. PubMed PMID: 21478880; PubMed Central PMCID: PMCPMC4090391.

959. Savic S, Dickie LJ, Wittmann M, McDermott MF. Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol (2012) 26(4):505-33. Epub 2012/10/09. doi: 10.1016/j.berh.2012.07.009. PubMed PMID: 23040364.

960. Savic S, Dickie LJ, Battellino M, McDermott MF. Familial Mediterranean fever and related periodic fever syndromes/autoinflammatory diseases. Curr Opin Rheumatol (2012) 24(1):103-12. Epub 2011/11/18. doi: 10.1097/BOR.0b013e32834dd2d5. PubMed PMID: 22089100.

961. Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol (2014) 92(4):340-5. Epub 2014/03/19. doi: 10.1038/icb.2014.11. PubMed PMID: 24638063.

962. Weber K, Schilling JD. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem (2014) 289(13):9158-71. Epub 2014/02/18. doi: 10.1074/jbc.M113.531202. PubMed PMID: 24532802; PubMed Central PMCID: PMCPMC3979407.

963. Miao H, Ou J, Ma Y, Guo F, Yang Z, Wiggins M, et al. Macrophage CGI-58 deficiency activates ROS-inflammasome pathway to promote insulin resistance in mice. Cell Rep (2014) 7(1):223-35. Epub 2014/04/08. doi: 10.1016/j.celrep.2014.02.047. PubMed PMID: 24703845; PubMed Central PMCID: PMCPMC4040312.

964. Yang S, Xia C, Li S, Du L, Zhang L, Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol (2014) 3:63-71. Epub 2014/12/03. doi: 10.1016/j.redox.2014.04.001. PubMed PMID: 25462067; PubMed Central PMCID: PMCPMC4295565.

965. Yang SM, Ka SM, Wu HL, Yeh YC, Kuo CH, Hua KF, et al. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-kappaB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia (2014) 57(2):424-34. Epub 2013/12/10. doi: 10.1007/s00125-013-3115-6. PubMed PMID: 24317792.

966. Wu J, Li H, Sun X, Zhang H, Hao S, Ji M, et al. A Mitochondrion-Targeted Antioxidant Ameliorates Isoflurane-Induced Cognitive Deficits in Aging Mice. PLoS One (2015) 10(9):e0138256. Epub 2015/09/18. doi: 10.1371/journal.pone.0138256. PubMed PMID: 26379247; PubMed Central PMCID: PMCPMC4575031.

967. Zu Y, Wan LJ, Cui SY, Gong YP, Li CL. The mitochondrial Na(+)/Ca(2+) exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells. J Geriatr Cardiol (2015) 12(3):270-8. Epub 2015/06/20. doi: 10.11909/j.issn.1671-5411.2015.03.003. PubMed PMID: 26089852; PubMed Central PMCID: PMCPMC4460171.

968. Stout-Delgado HW, Cho SJ, Chu SG, Mitzel DN, Villalba J, El-Chemaly S, et al. Age-Dependent Susceptibility to Pulmonary Fibrosis Is Associated with NLRP3 Inflammasome Activation. Am J Respir Cell Mol Biol (2016) 55(2):252-63. Epub 2016/03/05. doi: 10.1165/rcmb.2015-0222OC. PubMed PMID: 26933834; PubMed Central PMCID: PMCPMC4979364.

969. Sud N, Rutledge AC, Pan K, Su Q. Activation of the dsRNA-Activated Protein Kinase PKR in Mitochondrial Dysfunction and Inflammatory Stress in Metabolic Syndrome. Curr Pharm Des (2016) 22(18):2697-703. Epub 2016/02/03. doi: 10.2174/1381612822666160202141845. PubMed PMID: 26831644.

970. Li A, Zhang S, Li J, Liu K, Huang F, Liu B. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol Cell Endocrinol (2016) 434:36-47. Epub 2016/06/09. doi: 10.1016/j.mce.2016.06.008. PubMed PMID: 27276511.

971. Yu JW, Lee MS. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res (2016) 39(11):1503-18. Epub 2016/09/08. doi: 10.1007/s12272-016-0827-4. PubMed PMID: 27600432.

972. Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci (2017) 74(10):1777-91. Epub 2016/12/13. doi: 10.1007/s00018-016-2431-7. PubMed PMID: 27942750; PubMed Central PMCID: PMCPMC5391300.

973. Song Y, Wang Y, Zhang Y, Geng W, Liu W, Gao Y, et al. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J Cell Mol Med (2017) 21(7):1373-87. Epub 2017/02/23. doi: 10.1111/jcmm.13067. PubMed PMID: 28224704; PubMed Central PMCID: PMCPMC5487914.

974. Steen KA, Xu H, Bernlohr DA. FABP4/aP2 Regulates Macrophage Redox Signaling and Inflammasome Activation via Control of UCP2. Mol Cell Biol (2017) 37(2). Epub 2016/11/01. doi: 10.1128/MCB.00282-16. PubMed PMID: 27795298; PubMed Central PMCID: PMCPMC5214853.

975. Thom SR, Bhopale VM, Yu K, Huang W, Kane MA, Margolis DJ. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J Biol Chem (2017) 292(44):18312-24. Epub 2017/10/04. doi: 10.1074/jbc.M117.802629. PubMed PMID: 28972154; PubMed Central PMCID: PMCPMC5672053.

976. Song E, Jahng JW, Chong LP, Sung HK, Han M, Luo C, et al. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge. Am J Transl Res (2017) 9(6):2723-35. Epub 2017/07/04. PubMed PMID: 28670364; PubMed Central PMCID: PMCPMC5489876.

977. Gong T, Wang X, Yang Y, Yan Y, Yu C, Zhou R, et al. Plant Lectins Activate the NLRP3 Inflammasome To Promote Inflammatory Disorders. J Immunol (2017) 198(5):2082-92. Epub 2017/01/15. doi: 10.4049/jimmunol.1600145. PubMed PMID: 28087670.

978. Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, et al. Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Oxid Med Cell Longev (2018) 2018:9286458. Epub 2018/09/27. doi: 10.1155/2018/9286458. PubMed PMID: 30254716; PubMed Central PMCID: PMCPMC6142770.

979. Swardfager W, Hennebelle M, Yu D, Hammock BD, Levitt AJ, Hashimoto K, et al. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev (2018) 87:56-66. Epub 2018/02/07. doi: 10.1016/j.neubiorev.2018.01.010. PubMed PMID: 29407524; PubMed Central PMCID: PMCPMC5860823.

980. Tyagi A, Nguyen CU, Chong T, Michel CR, Fritz KS, Reisdorph N, et al. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain. Sci Rep (2018) 8(1):17547. Epub 2018/12/05. doi: 10.1038/s41598-018-35890-7. PubMed PMID: 30510203; PubMed Central PMCID: PMCPMC6277395.

981. Viaud M, Ivanov S, Vujic N, Duta-Mare M, Aira LE, Barouillet T, et al. Lysosomal Cholesterol Hydrolysis Couples Efferocytosis to Anti-Inflammatory Oxysterol Production. Circ Res (2018) 122(10):1369-84. Epub 2018/03/11. doi: 10.1161/CIRCRESAHA.117.312333. PubMed PMID: 29523554; PubMed Central PMCID: PMCPMC6034181.

982. Okla M, Zaher W, Alfayez M, Chung S. Inhibitory Effects of Toll-Like Receptor 4, NLRP3 Inflammasome, and Interleukin-1beta on White Adipocyte Browning. Inflammation (2018) 41(2):626-42. Epub 2017/12/22. doi: 10.1007/s10753-017-0718-y. PubMed PMID: 29264745; PubMed Central PMCID: PMCPMC6066287.

983. Rovira-Llopis S, Apostolova N, Banuls C, Muntane J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal (2018) 29(8):749-91. Epub 2017/12/20. doi: 10.1089/ars.2017.7313. PubMed PMID: 29256638.

984. Zhu MJ, Kang Y, Xue Y, Liang X, Garcia MPG, Rodgers D, et al. Red raspberries suppress NLRP3 inflammasome and attenuate metabolic abnormalities in diet-induced obese mice. J Nutr Biochem (2018) 53:96-103. Epub 2017/12/05. doi: 10.1016/j.jnutbio.2017.10.012. PubMed PMID: 29202274.

985. Lyu JJ, Mehta JL, Li Y, Ye L, Sun SN, Sun HS, et al. Mitochondrial Autophagy and NLRP3 Inflammasome in Pulmonary Tissues from Severe Combined Immunodeficient Mice after Cardiac Arrest and Cardiopulmonary Resuscitation. Chin Med J (Engl) (2018) 131(10):1174-84. Epub 2018/05/04. doi: 10.4103/0366-6999.231519. PubMed PMID: 29722336; PubMed Central PMCID: PMCPMC5956768.

986. Zhu W, Feng PP, He K, Li SW, Gong JP. Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet. Biochem Biophys Res Commun (2018) 505(2):523-9. Epub 2018/10/03. doi: 10.1016/j.bbrc.2018.09.134. PubMed PMID: 30269815.

987. Shamekhi Amiri F. Intracellular organelles in health and kidney disease. Nephrol Ther (2019) 15(1):9-21. Epub 2018/06/12. doi: 10.1016/j.nephro.2018.04.002. PubMed PMID: 29887266.

988. Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci (2019) 15(5):1010-9. Epub 2019/06/12. doi: 10.7150/ijbs.29680. PubMed PMID: 31182921; PubMed Central PMCID: PMCPMC6535781.

989. Zhang YZ, Zhang YL, Huang Q, Huang C, Jiang ZL, Cai F, et al. AdipoRon Alleviates Free Fatty Acid-Induced Myocardial Cell Injury Via Suppressing Nlrp3 Inflammasome Activation. Diabetes Metab Syndr Obes (2019) 12:2165-79. Epub 2019/11/22. doi: 10.2147/DMSO.S221841. PubMed PMID: 31749627; PubMed Central PMCID: PMCPMC6817839.

990. Li X, Ke X, Li Z, Li B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun (2019) 514(1):1-8. Epub 2019/04/25. doi: 10.1016/j.bbrc.2019.04.110. PubMed PMID: 31014675.

991. Xu L, Lin X, Guan M, Zeng Y, Liu Y. Verapamil Attenuated Prediabetic Neuropathy in High-Fat Diet-Fed Mice through Inhibiting TXNIP-Mediated Apoptosis and Inflammation. Oxid Med Cell Longev (2019) 2019:1896041. Epub 2019/02/09. doi: 10.1155/2019/1896041. PubMed PMID: 30733849; PubMed Central PMCID: PMCPMC6348807.

992. Zhang C, Abdukerim M, Abilailieti M, Tang L, Ling Y, Pan S. The protective effects of orexin a against high glucose-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Arch Biochem Biophys (2019) 672:108052. Epub 2019/07/28. doi: 10.1016/ PubMed PMID: 31351069.

993. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci (2019) 20(13). Epub 2019/07/10. doi: 10.3390/ijms20133328. PubMed PMID: 31284572; PubMed Central PMCID: PMCPMC6651423.

994. Qi Y, Du X, Yao X, Zhao Y. Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells. Artif Cells Nanomed Biotechnol (2019) 47(1):1067-74. Epub 2019/04/05. doi: 10.1080/21691401.2019.1578783. PubMed PMID: 30945564.

995. Peng Z, Zhan H, Shao Y, Xiong Y, Zeng L, Zhang C, et al. 13-Methylberberine improves endothelial dysfunction by inhibiting NLRP3 inflammasome activation via autophagy induction in human umbilical vein endothelial cells. Chin Med (2020) 15:8. Epub 2020/01/30. doi: 10.1186/s13020-020-0286-1. PubMed PMID: 31993073; PubMed Central PMCID: PMCPMC6977264.

996. Sun X, Wu A, Kwan Law BY, Liu C, Zeng W, Ling Qiu AC, et al. The active components derived from Penthorum chinensePursh protect against oxidative-stress-induced vascular injury via autophagy induction. Free Radic Biol Med (2020) 146:160-80. Epub 2019/11/07. doi: 10.1016/j.freeradbiomed.2019.10.417. PubMed PMID: 31689485.

997. Wang Y, Liu X, Shi H, Yu Y, Yu Y, Li M, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med (2020) 10(1):91-106. Epub 2020/06/09. doi: 10.1002/ctm2.13. PubMed PMID: 32508013; PubMed Central PMCID: PMCPMC7240865.

998. Zeng Z, Zheng Q, Chen J, Tan X, Li Q, Ding L, et al. FGF21 mitigates atherosclerosis via inhibition of NLRP3 inflammasome-mediated vascular endothelial cells pyroptosis. Exp Cell Res (2020):112108. Epub 2020/05/24. doi: 10.1016/j.yexcr.2020.112108. PubMed PMID: 32445748.

999. Liu Y, He H, Fan L, Yuan J, Huang H, Yang W, et al. Compound C attenuates NLRP3 inflammasome despite AMPK knockdown in LPS plus palmitate-induced THP-1 cells. Naunyn Schmiedebergs Arch Pharmacol (2020) 393(1):67-76. Epub 2019/08/20. doi: 10.1007/s00210-019-01712-4. PubMed PMID: 31420721.

1000. An X, Zhang Y, Cao Y, Chen J, Qin H, Yang L. Punicalagin Protects Diabetic Nephropathy by Inhibiting Pyroptosis Based on TXNIP/NLRP3 Pathway. Nutrients (2020) 12(5). Epub 2020/05/28. doi: 10.3390/nu12051516. PubMed PMID: 32456088; PubMed Central PMCID: PMCPMC7284711.

1001. Andriuta D, Roger PA, Thibault W, Toublanc B, Sauzay C, Castelain S, et al. COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF. J Neurol (2020). Epub 2020/06/13. doi: 10.1007/s00415-020-09975-1. PubMed PMID: 32529577; PubMed Central PMCID: PMCPMC7288264.

1002. Deliwala S, Abdulhamid S, Abusalih MF, Al-Qasmi MM, Bachuwa G. Encephalopathy as the Sentinel Sign of a Cortical Stroke in a Patient Infected With Coronavirus Disease-19 (COVID-19). Cureus (2020) 12(5):e8121. Epub 2020/05/20. doi: 10.7759/cureus.8121. PubMed PMID: 32426200; PubMed Central PMCID: PMCPMC7228791.

1003. Dixon L, Varley J, Gontsarova A, Mallon D, Tona F, Muir D, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol Neuroimmunol Neuroinflamm (2020) 7(5). Epub 2020/05/28. doi: 10.1212/NXI.0000000000000789. PubMed PMID: 32457227; PubMed Central PMCID: PMCPMC7286661.

1004. Espinosa PS, Rizvi Z, Sharma P, Hindi F, Filatov A. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy, MRI Brain and Cerebrospinal Fluid Findings: Case 2. Cureus (2020) 12(5):e7930. Epub 2020/06/06. doi: 10.7759/cureus.7930. PubMed PMID: 32499974; PubMed Central PMCID: PMCPMC7266087.

1005. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus (2020) 12(3):e7352. Epub 2020/04/25. doi: 10.7759/cureus.7352. PubMed PMID: 32328364; PubMed Central PMCID: PMCPMC7170017.

1006. Franceschi AM, Ahmed O, Giliberto L, Castillo M. Hemorrhagic Posterior Reversible Encephalopathy Syndrome as a Manifestation of COVID-19 Infection. AJNR Am J Neuroradiol (2020) 41(7):1173-6. Epub 2020/05/23. doi: 10.3174/ajnr.A6595. PubMed PMID: 32439646; PubMed Central PMCID: PMCPMC7357664.

1007. Haddad S, Tayyar R, Risch L, Churchill G, Fares E, Choe M, et al. Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient. IDCases (2020):e00814. Epub 2020/05/20. doi: 10.1016/j.idcr.2020.e00814. PubMed PMID: 32426230; PubMed Central PMCID: PMCPMC7228895.

1008. Hayashi M, Sahashi Y, Baba Y, Okura H, Shimohata T. COVID-19-associated mild encephalitis/encephalopathy with a reversible splenial lesion. J Neurol Sci (2020) 415:116941. Epub 2020/06/01. doi: 10.1016/j.jns.2020.116941. PubMed PMID: 32474220; PubMed Central PMCID: PMCPMC7251406.

1009. Kishfy L, Casasola M, Banankhah P, Parvez A, Jan YJ, Shenoy AM, et al. Posterior reversible encephalopathy syndrome (PRES) as a neurological association in severe Covid-19. J Neurol Sci (2020) 414:116943. Epub 2020/06/01. doi: 10.1016/j.jns.2020.116943. PubMed PMID: 32474362; PubMed Central PMCID: PMCPMC7245308.

1010. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology (2020) 296(2):E119-E20. Epub 2020/04/02. doi: 10.1148/radiol.2020201187. PubMed PMID: 32228363; PubMed Central PMCID: PMCPMC7233386.

1011. Zayet S, Ben Abdallah Y, Royer PY, Toko-Tchiundzie L, Gendrin V, Klopfenstein T. Encephalopathy in patients with COVID-19: ‘Causality or coincidence?’. J Med Virol (2020). Epub 2020/05/20. doi: 10.1002/jmv.26027. PubMed PMID: 32427357; PubMed Central PMCID: PMCPMC7276913.

1012. Schlosshauer M. Decoherence and the quantum-to-classical transition. (2007).

1013. Bennett JP. Medical hypothesis: Neurodegenerative diseases arise from oxidative damage to electron tunneling proteins in mitochondria. Med Hypotheses (2019) 127:1-4. Epub 2019/05/16. doi: 10.1016/j.mehy.2019.03.034. PubMed PMID: 31088629.

1014. Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, et al. A Mitochondrial Approach to Cardiovascular Risk and Disease. Curr Pharm Des (2019) 25(29):3175-94. Epub 2019/09/01. doi: 10.2174/1389203720666190830163735. PubMed PMID: 31470786.

1015. Bennett J, Burns J, Welch P, Bothwell R. Safety and Tolerability of R(+) Pramipexole in Mild-to-Moderate Alzheimer’s Disease. J Alzheimers Dis (2016) 49(4):1179-87. Epub 2015/12/20. doi: 10.3233/JAD-150788. PubMed PMID: 26682692; PubMed Central PMCID: PMCPMC5862139.

1016. Wang H, Larriviere KS, Keller KE, Ware KA, Burns TM, Conaway MA, et al. R+ pramipexole as a mitochondrially focused neuroprotectant: initial early phase studies in ALS. Amyotroph Lateral Scler (2008) 9(1):50-8. Epub 2008/02/14. doi: 10.1080/17482960701791234. PubMed PMID: 18270879.

1017. Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One (2013) 8(1):e54163. Epub 2013/02/02. doi: 10.1371/journal.pone.0054163. PubMed PMID: 23372680; PubMed Central PMCID: PMCPMC3553161.